{"title":"荧光高光谱成像技术与化学计量学相结合,用于猕猴桃质量属性评估和成熟度的非破坏性判断。","authors":"Zhiyong Zou, Qianlong Wang, Qingsong Wu, Menghua Li, Jiangbo Zhen, Dongyu Yuan, Yuchen Xiao, Chong Xu, Shutao Yin, Man Zhou, Lijia Xu","doi":"10.1016/j.talanta.2024.126793","DOIUrl":null,"url":null,"abstract":"<p><p>Dry matter content (DMC), firmness and soluble solid content (SSC) are important indicators for assessing the quality attributes and determining the maturity of kiwifruit. However, traditional measurement methods are time-consuming, labor-intensive, and destructive to the kiwifruit, leading to resource wastage. In order to solve this problem, this study has tracked the flowering, fruiting, maturing and collecting processes of Ya'an red-heart kiwifruit, and has proposed a non-destructive method for kiwifruit quality attribute assessment and maturity identification that combines fluorescence hyperspectral imaging (FHSI) technology and chemometrics. Specifically, first of all, three different spectral data preprocessing methods were adopted, and PLSR was used to evaluate the quality attributes (DMC, firmness, and SSC) of kiwifruit. Next, the differences in accuracy of different models in discriminating kiwifruit maturity were compared, and an ensemble learning model based on LightGBM and GBDT models was constructed. The results indicate that the ensemble learning model outperforms single machine learning models. In addition, the application effects of the 'Convolutional Neural Network'-'Multilayer Perceptron' (CNN-MLP) model under different optimization algorithms were compared. To improve the robustness of the model, an improved whale optimization algorithm (IWOA) was introduced by modifying the acceleration factor. Overall, the IWOA-CNN-MLP model performs the best in discriminating the maturity of kiwifruit, with Accuracy<sub>test</sub> of 0.916 and Loss of 0.23. In addition, compared with the basic model, the accuracy of the integrated learning model SG-MSC-SEL was improved by about 12%-20 %. The research findings will provide new perspectives for the evaluation of kiwifruit quality and maturity discrimination using FHSI and chemometric methods, thereby promoting further research and applications in this field.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescence hyperspectral imaging technology combined with chemometrics for kiwifruit quality attribute assessment and non-destructive judgment of maturity.\",\"authors\":\"Zhiyong Zou, Qianlong Wang, Qingsong Wu, Menghua Li, Jiangbo Zhen, Dongyu Yuan, Yuchen Xiao, Chong Xu, Shutao Yin, Man Zhou, Lijia Xu\",\"doi\":\"10.1016/j.talanta.2024.126793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dry matter content (DMC), firmness and soluble solid content (SSC) are important indicators for assessing the quality attributes and determining the maturity of kiwifruit. However, traditional measurement methods are time-consuming, labor-intensive, and destructive to the kiwifruit, leading to resource wastage. In order to solve this problem, this study has tracked the flowering, fruiting, maturing and collecting processes of Ya'an red-heart kiwifruit, and has proposed a non-destructive method for kiwifruit quality attribute assessment and maturity identification that combines fluorescence hyperspectral imaging (FHSI) technology and chemometrics. Specifically, first of all, three different spectral data preprocessing methods were adopted, and PLSR was used to evaluate the quality attributes (DMC, firmness, and SSC) of kiwifruit. Next, the differences in accuracy of different models in discriminating kiwifruit maturity were compared, and an ensemble learning model based on LightGBM and GBDT models was constructed. The results indicate that the ensemble learning model outperforms single machine learning models. In addition, the application effects of the 'Convolutional Neural Network'-'Multilayer Perceptron' (CNN-MLP) model under different optimization algorithms were compared. To improve the robustness of the model, an improved whale optimization algorithm (IWOA) was introduced by modifying the acceleration factor. Overall, the IWOA-CNN-MLP model performs the best in discriminating the maturity of kiwifruit, with Accuracy<sub>test</sub> of 0.916 and Loss of 0.23. In addition, compared with the basic model, the accuracy of the integrated learning model SG-MSC-SEL was improved by about 12%-20 %. The research findings will provide new perspectives for the evaluation of kiwifruit quality and maturity discrimination using FHSI and chemometric methods, thereby promoting further research and applications in this field.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126793\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126793","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Fluorescence hyperspectral imaging technology combined with chemometrics for kiwifruit quality attribute assessment and non-destructive judgment of maturity.
Dry matter content (DMC), firmness and soluble solid content (SSC) are important indicators for assessing the quality attributes and determining the maturity of kiwifruit. However, traditional measurement methods are time-consuming, labor-intensive, and destructive to the kiwifruit, leading to resource wastage. In order to solve this problem, this study has tracked the flowering, fruiting, maturing and collecting processes of Ya'an red-heart kiwifruit, and has proposed a non-destructive method for kiwifruit quality attribute assessment and maturity identification that combines fluorescence hyperspectral imaging (FHSI) technology and chemometrics. Specifically, first of all, three different spectral data preprocessing methods were adopted, and PLSR was used to evaluate the quality attributes (DMC, firmness, and SSC) of kiwifruit. Next, the differences in accuracy of different models in discriminating kiwifruit maturity were compared, and an ensemble learning model based on LightGBM and GBDT models was constructed. The results indicate that the ensemble learning model outperforms single machine learning models. In addition, the application effects of the 'Convolutional Neural Network'-'Multilayer Perceptron' (CNN-MLP) model under different optimization algorithms were compared. To improve the robustness of the model, an improved whale optimization algorithm (IWOA) was introduced by modifying the acceleration factor. Overall, the IWOA-CNN-MLP model performs the best in discriminating the maturity of kiwifruit, with Accuracytest of 0.916 and Loss of 0.23. In addition, compared with the basic model, the accuracy of the integrated learning model SG-MSC-SEL was improved by about 12%-20 %. The research findings will provide new perspectives for the evaluation of kiwifruit quality and maturity discrimination using FHSI and chemometric methods, thereby promoting further research and applications in this field.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.