{"title":"疏伐对大型冷杉人工林土壤理化性质和微生物群落组成介导的碳储存的影响","authors":"Lei Huang, Yunchao Zhou","doi":"10.1186/s13021-024-00269-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Thinning practices are useful measures in forest management and play an essential role in maintaining ecological stability. However, the effects of thinning on the soil properties and microbial community in large Chinese fir timber plantations remain unknown. The purpose of this study was to investigate the changes in soil physicochemical properties and microbial community composition in topsoil (0–20 cm) under six different intensities (i.e., 300 (R300), 450 (R450), 600 (R600), 750 (R750) and 900 (R900) trees per hectare and 1650 (R1650) as a control) in a large Chinese fir timber plantation.</p><h3>Results</h3><p>Compared with the CK treatment, thinning significantly altered the contents of soil organic carbon (SOC) and its fractions but not in a linear fashion; these indicators were highest in R900. In addition, thinning did not significantly affect the soil microbial community diversity indices but significantly affected the relative abundance of the core microbial community. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial phyla; the relative abundances of Proteobacteria and Acidobacteria were highest in R900, and that of Actinobacteria was lowest in R900. The dominant fungal phyla were Ascomycota, Basidiomycota and Mucoromycota; the relative abundance of Ascomycota was lowest in R900, and that of Mucoromycota was highest in R900. The fungal microbial community composition was more sensitive than the bacterial community composition. The activity of the carbon-cycling genes was not linearly correlated with thinning, and the abundance of C-cycle genes was highest in R900.</p><h3>Conclusions</h3><p>These findings are important because they show that SOC and its fractions and the abundance of the soil microorganism community in large Chinese fir timber plantations can be significantly altered by thinning, thus affecting the capacity for carbon storage. These results may advance our understanding of how the density of large timber plantations could be modified to promote soil carbon storage.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00269-x","citationCount":"0","resultStr":"{\"title\":\"Influence of thinning on carbon storage mediated by soil physicochemical properties and microbial community composition in large Chinese fir timber plantation\",\"authors\":\"Lei Huang, Yunchao Zhou\",\"doi\":\"10.1186/s13021-024-00269-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Thinning practices are useful measures in forest management and play an essential role in maintaining ecological stability. However, the effects of thinning on the soil properties and microbial community in large Chinese fir timber plantations remain unknown. The purpose of this study was to investigate the changes in soil physicochemical properties and microbial community composition in topsoil (0–20 cm) under six different intensities (i.e., 300 (R300), 450 (R450), 600 (R600), 750 (R750) and 900 (R900) trees per hectare and 1650 (R1650) as a control) in a large Chinese fir timber plantation.</p><h3>Results</h3><p>Compared with the CK treatment, thinning significantly altered the contents of soil organic carbon (SOC) and its fractions but not in a linear fashion; these indicators were highest in R900. In addition, thinning did not significantly affect the soil microbial community diversity indices but significantly affected the relative abundance of the core microbial community. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial phyla; the relative abundances of Proteobacteria and Acidobacteria were highest in R900, and that of Actinobacteria was lowest in R900. The dominant fungal phyla were Ascomycota, Basidiomycota and Mucoromycota; the relative abundance of Ascomycota was lowest in R900, and that of Mucoromycota was highest in R900. The fungal microbial community composition was more sensitive than the bacterial community composition. The activity of the carbon-cycling genes was not linearly correlated with thinning, and the abundance of C-cycle genes was highest in R900.</p><h3>Conclusions</h3><p>These findings are important because they show that SOC and its fractions and the abundance of the soil microorganism community in large Chinese fir timber plantations can be significantly altered by thinning, thus affecting the capacity for carbon storage. These results may advance our understanding of how the density of large timber plantations could be modified to promote soil carbon storage.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00269-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00269-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00269-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Influence of thinning on carbon storage mediated by soil physicochemical properties and microbial community composition in large Chinese fir timber plantation
Background
Thinning practices are useful measures in forest management and play an essential role in maintaining ecological stability. However, the effects of thinning on the soil properties and microbial community in large Chinese fir timber plantations remain unknown. The purpose of this study was to investigate the changes in soil physicochemical properties and microbial community composition in topsoil (0–20 cm) under six different intensities (i.e., 300 (R300), 450 (R450), 600 (R600), 750 (R750) and 900 (R900) trees per hectare and 1650 (R1650) as a control) in a large Chinese fir timber plantation.
Results
Compared with the CK treatment, thinning significantly altered the contents of soil organic carbon (SOC) and its fractions but not in a linear fashion; these indicators were highest in R900. In addition, thinning did not significantly affect the soil microbial community diversity indices but significantly affected the relative abundance of the core microbial community. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant bacterial phyla; the relative abundances of Proteobacteria and Acidobacteria were highest in R900, and that of Actinobacteria was lowest in R900. The dominant fungal phyla were Ascomycota, Basidiomycota and Mucoromycota; the relative abundance of Ascomycota was lowest in R900, and that of Mucoromycota was highest in R900. The fungal microbial community composition was more sensitive than the bacterial community composition. The activity of the carbon-cycling genes was not linearly correlated with thinning, and the abundance of C-cycle genes was highest in R900.
Conclusions
These findings are important because they show that SOC and its fractions and the abundance of the soil microorganism community in large Chinese fir timber plantations can be significantly altered by thinning, thus affecting the capacity for carbon storage. These results may advance our understanding of how the density of large timber plantations could be modified to promote soil carbon storage.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.