Minsup Lee, Wendy Leskova, Randa S. Eshaq, Zithlaly Amezquita, Norman R. Harris
{"title":"自发性高血压大鼠视网膜光感受器丧失的机制。","authors":"Minsup Lee, Wendy Leskova, Randa S. Eshaq, Zithlaly Amezquita, Norman R. Harris","doi":"10.1016/j.exer.2024.110065","DOIUrl":null,"url":null,"abstract":"<div><p>Retinal neurodegenerative diseases, including hypertensive retinopathy, involve progressive damage to retinal neurons, leading to visual impairment. In this study, we investigated the pathological mechanisms underlying retinal neurodegeneration in spontaneously hypertensive rats (SHR), using Wistar Kyoto (WKY) rats as normotensive controls. We observed that SHR exhibited significantly higher blood pressure and decreased retinal thickness, indicating retinal neurodegeneration. Molecular tests including quantitative real-time polymerase chain reaction, immunoblot, and immunofluorescent staining showed elevated levels of the pro-inflammatory cytokine tumor necrosis factor-α, apoptotic markers (Fas, FasL, caspase-8, active caspase-3, and cleaved poly (ADP-ribose) polymerase), and necroptotic markers (receptor-interacting protein kinase-1 and -3) in SHR retinas. Additionally, we found elevated transforming growth factor-β (TGF-β) levels in the retinal pigment epithelium (RPE) of SHR, with a decrease in lecithin retinol acyltransferase (LRAT), which regulates retinoid metabolism and photoreceptor health. In human RPE cells (ARPE-19), TGF-β administration suppressed mRNA and protein levels of LRAT; and vactosertib, a selective inhibitor of TGF-β receptor kinase type 1, reversed the effect of TGF-β. These findings suggest that hypertension-induced retinal neurodegeneration involves inflammation, apoptosis, necroptosis, and disrupted retinoid metabolism, providing potential therapeutic targets for hypertensive retinopathy.</p></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"247 ","pages":"Article 110065"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of retinal photoreceptor loss in spontaneously hypertensive rats\",\"authors\":\"Minsup Lee, Wendy Leskova, Randa S. Eshaq, Zithlaly Amezquita, Norman R. Harris\",\"doi\":\"10.1016/j.exer.2024.110065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Retinal neurodegenerative diseases, including hypertensive retinopathy, involve progressive damage to retinal neurons, leading to visual impairment. In this study, we investigated the pathological mechanisms underlying retinal neurodegeneration in spontaneously hypertensive rats (SHR), using Wistar Kyoto (WKY) rats as normotensive controls. We observed that SHR exhibited significantly higher blood pressure and decreased retinal thickness, indicating retinal neurodegeneration. Molecular tests including quantitative real-time polymerase chain reaction, immunoblot, and immunofluorescent staining showed elevated levels of the pro-inflammatory cytokine tumor necrosis factor-α, apoptotic markers (Fas, FasL, caspase-8, active caspase-3, and cleaved poly (ADP-ribose) polymerase), and necroptotic markers (receptor-interacting protein kinase-1 and -3) in SHR retinas. Additionally, we found elevated transforming growth factor-β (TGF-β) levels in the retinal pigment epithelium (RPE) of SHR, with a decrease in lecithin retinol acyltransferase (LRAT), which regulates retinoid metabolism and photoreceptor health. In human RPE cells (ARPE-19), TGF-β administration suppressed mRNA and protein levels of LRAT; and vactosertib, a selective inhibitor of TGF-β receptor kinase type 1, reversed the effect of TGF-β. These findings suggest that hypertension-induced retinal neurodegeneration involves inflammation, apoptosis, necroptosis, and disrupted retinoid metabolism, providing potential therapeutic targets for hypertensive retinopathy.</p></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"247 \",\"pages\":\"Article 110065\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014483524002860\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524002860","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Mechanisms of retinal photoreceptor loss in spontaneously hypertensive rats
Retinal neurodegenerative diseases, including hypertensive retinopathy, involve progressive damage to retinal neurons, leading to visual impairment. In this study, we investigated the pathological mechanisms underlying retinal neurodegeneration in spontaneously hypertensive rats (SHR), using Wistar Kyoto (WKY) rats as normotensive controls. We observed that SHR exhibited significantly higher blood pressure and decreased retinal thickness, indicating retinal neurodegeneration. Molecular tests including quantitative real-time polymerase chain reaction, immunoblot, and immunofluorescent staining showed elevated levels of the pro-inflammatory cytokine tumor necrosis factor-α, apoptotic markers (Fas, FasL, caspase-8, active caspase-3, and cleaved poly (ADP-ribose) polymerase), and necroptotic markers (receptor-interacting protein kinase-1 and -3) in SHR retinas. Additionally, we found elevated transforming growth factor-β (TGF-β) levels in the retinal pigment epithelium (RPE) of SHR, with a decrease in lecithin retinol acyltransferase (LRAT), which regulates retinoid metabolism and photoreceptor health. In human RPE cells (ARPE-19), TGF-β administration suppressed mRNA and protein levels of LRAT; and vactosertib, a selective inhibitor of TGF-β receptor kinase type 1, reversed the effect of TGF-β. These findings suggest that hypertension-induced retinal neurodegeneration involves inflammation, apoptosis, necroptosis, and disrupted retinoid metabolism, providing potential therapeutic targets for hypertensive retinopathy.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.