在二维口内照片上检测交叉咬合的深度学习模型比较。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-02 DOI:10.1186/s13005-024-00448-8
Beatrice Noeldeke, Stratos Vassis, Mohammedreza Sefidroodi, Ruben Pauwels, Peter Stoustrup
{"title":"在二维口内照片上检测交叉咬合的深度学习模型比较。","authors":"Beatrice Noeldeke, Stratos Vassis, Mohammedreza Sefidroodi, Ruben Pauwels, Peter Stoustrup","doi":"10.1186/s13005-024-00448-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To support dentists with limited experience, this study trained and compared six convolutional neural networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.</p><p><strong>Methods: </strong>Based on 676 photographs from 311 orthodontic patients, six convolutional neural network models were trained and compared to classify (1) non-crossbite vs. crossbite and (2) non-crossbite vs. lateral crossbite vs. frontal crossbite. The trained models comprised DenseNet, EfficientNet, MobileNet, ResNet18, ResNet50, and Xception.</p><p><strong>Findings: </strong>Among the models, Xception showed the highest accuracy (98.57%) in the test dataset for classifying non-crossbite vs. crossbite images. When additionally distinguishing between lateral and frontal crossbites, average accuracy decreased with the DenseNet architecture achieving the highest accuracy among the models with 91.43% in the test dataset.</p><p><strong>Conclusions: </strong>Convolutional neural networks show high potential in processing clinical photographs and detecting crossbites. This study provides initial insights into how deep learning models can be used for orthodontic diagnosis of malocclusions based on intraoral 2D photographs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"20 1","pages":"45"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of deep learning models to detect crossbites on 2D intraoral photographs.\",\"authors\":\"Beatrice Noeldeke, Stratos Vassis, Mohammedreza Sefidroodi, Ruben Pauwels, Peter Stoustrup\",\"doi\":\"10.1186/s13005-024-00448-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To support dentists with limited experience, this study trained and compared six convolutional neural networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.</p><p><strong>Methods: </strong>Based on 676 photographs from 311 orthodontic patients, six convolutional neural network models were trained and compared to classify (1) non-crossbite vs. crossbite and (2) non-crossbite vs. lateral crossbite vs. frontal crossbite. The trained models comprised DenseNet, EfficientNet, MobileNet, ResNet18, ResNet50, and Xception.</p><p><strong>Findings: </strong>Among the models, Xception showed the highest accuracy (98.57%) in the test dataset for classifying non-crossbite vs. crossbite images. When additionally distinguishing between lateral and frontal crossbites, average accuracy decreased with the DenseNet architecture achieving the highest accuracy among the models with 91.43% in the test dataset.</p><p><strong>Conclusions: </strong>Convolutional neural networks show high potential in processing clinical photographs and detecting crossbites. This study provides initial insights into how deep learning models can be used for orthodontic diagnosis of malocclusions based on intraoral 2D photographs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"20 1\",\"pages\":\"45\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13005-024-00448-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13005-024-00448-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:为了给经验有限的牙医提供支持,本研究使用二维口内照片训练并比较了六个卷积神经网络,以检测交叉咬合并对非交叉咬合、正面和侧面交叉咬合进行分类:方法: 根据 311 名正畸患者的 676 张照片,对六个卷积神经网络模型进行了训练和比较,以便对(1)非交叉咬合与交叉咬合;(2)非交叉咬合与侧面交叉咬合与正面交叉咬合进行分类。训练的模型包括 DenseNet、EfficientNet、MobileNet、ResNet18、ResNet50 和 Xception:在这些模型中,Xception 在测试数据集中对非交叉咬合与交叉咬合图像进行分类的准确率最高(98.57%)。在额外区分侧面和正面交叉咬合时,平均准确率有所下降,DenseNet 架构在测试数据集中的准确率最高,达到 91.43%:卷积神经网络在处理临床照片和检测交叉咬合方面显示出巨大潜力。这项研究为深度学习模型如何用于基于口内二维照片的畸齿矫正诊断提供了初步见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of deep learning models to detect crossbites on 2D intraoral photographs.

Background: To support dentists with limited experience, this study trained and compared six convolutional neural networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.

Methods: Based on 676 photographs from 311 orthodontic patients, six convolutional neural network models were trained and compared to classify (1) non-crossbite vs. crossbite and (2) non-crossbite vs. lateral crossbite vs. frontal crossbite. The trained models comprised DenseNet, EfficientNet, MobileNet, ResNet18, ResNet50, and Xception.

Findings: Among the models, Xception showed the highest accuracy (98.57%) in the test dataset for classifying non-crossbite vs. crossbite images. When additionally distinguishing between lateral and frontal crossbites, average accuracy decreased with the DenseNet architecture achieving the highest accuracy among the models with 91.43% in the test dataset.

Conclusions: Convolutional neural networks show high potential in processing clinical photographs and detecting crossbites. This study provides initial insights into how deep learning models can be used for orthodontic diagnosis of malocclusions based on intraoral 2D photographs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1