{"title":"绘制人类转移性乳腺癌的转录进化图。","authors":"Melissa Q Reeves","doi":"10.1172/JCI183971","DOIUrl":null,"url":null,"abstract":"<p><p>Many aspects of breast cancer metastasis remain poorly understood, despite its clinical importance. In this issue of the JCI, Winkler et al. have applied an elegant patient-derived xenograft (PDX) model to map the transcriptomes of single cells in matched primary tumors and lung metastases across 13 breast cancer PDX models. They identified distinct transcriptional changes associated with metastatic evolution in lowly and highly metastatic primary tumors. Furthermore, by classifying the \"epithelial-mesenchymal plasticity\" (EMP) state of single cells, they revealed that considerable EMP heterogeneity exists among primary and metastatic human breast cancer cells. However, the EMP profile of a tumor does not change substantially upon metastasis. These findings give an unprecedentedly detailed view into the transcriptional heterogeneity and evolution of metastatic human breast cancer.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364401/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mapping the transcriptional evolution of human metastatic breast cancer.\",\"authors\":\"Melissa Q Reeves\",\"doi\":\"10.1172/JCI183971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many aspects of breast cancer metastasis remain poorly understood, despite its clinical importance. In this issue of the JCI, Winkler et al. have applied an elegant patient-derived xenograft (PDX) model to map the transcriptomes of single cells in matched primary tumors and lung metastases across 13 breast cancer PDX models. They identified distinct transcriptional changes associated with metastatic evolution in lowly and highly metastatic primary tumors. Furthermore, by classifying the \\\"epithelial-mesenchymal plasticity\\\" (EMP) state of single cells, they revealed that considerable EMP heterogeneity exists among primary and metastatic human breast cancer cells. However, the EMP profile of a tumor does not change substantially upon metastasis. These findings give an unprecedentedly detailed view into the transcriptional heterogeneity and evolution of metastatic human breast cancer.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI183971\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI183971","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Mapping the transcriptional evolution of human metastatic breast cancer.
Many aspects of breast cancer metastasis remain poorly understood, despite its clinical importance. In this issue of the JCI, Winkler et al. have applied an elegant patient-derived xenograft (PDX) model to map the transcriptomes of single cells in matched primary tumors and lung metastases across 13 breast cancer PDX models. They identified distinct transcriptional changes associated with metastatic evolution in lowly and highly metastatic primary tumors. Furthermore, by classifying the "epithelial-mesenchymal plasticity" (EMP) state of single cells, they revealed that considerable EMP heterogeneity exists among primary and metastatic human breast cancer cells. However, the EMP profile of a tumor does not change substantially upon metastasis. These findings give an unprecedentedly detailed view into the transcriptional heterogeneity and evolution of metastatic human breast cancer.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.