{"title":"更广泛地认识和了解感染后、抗生素难治性莱姆关节炎。","authors":"Allen C Steere, Jacob E Lemieux","doi":"10.1172/JCI184109","DOIUrl":null,"url":null,"abstract":"<p><p>Lyme disease, caused by Borrelia burgdorferi (Bb), can progress to Lyme arthritis (LA). While most patients with LA respond successfully to antibiotic therapy, a small percentage fail to improve, a condition known as antibiotic-refractory Lyme arthritis (ARLA). While T cell responses are known to drive ARLA, molecular mechanisms for ARLA remain unknown. In this issue of the JCI, Dirks et al. isolated disease-specific Th cells from patients with ARLA residing in Germany. A distinct TCR-β motif distinguished ARLA from other rheumatic diseases. Notably, the TCR-β motif was linked predominantly to HLA-DRB1*11 or 13 alleles, which differed from alleles in patients from North America. It also mapped primarily to T peripheral helper (Tph) cells, as opposed to classical Th1 cells. These findings provide a roadmap explaining how T cell responses necessary for control of an infection can, despite antibiotic therapy, drive a disadvantageous T cell response, resulting in a postinfectious, inflammatory arthritis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364397/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wider recognition and greater understanding of postinfectious, antibiotic-refractory Lyme arthritis.\",\"authors\":\"Allen C Steere, Jacob E Lemieux\",\"doi\":\"10.1172/JCI184109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lyme disease, caused by Borrelia burgdorferi (Bb), can progress to Lyme arthritis (LA). While most patients with LA respond successfully to antibiotic therapy, a small percentage fail to improve, a condition known as antibiotic-refractory Lyme arthritis (ARLA). While T cell responses are known to drive ARLA, molecular mechanisms for ARLA remain unknown. In this issue of the JCI, Dirks et al. isolated disease-specific Th cells from patients with ARLA residing in Germany. A distinct TCR-β motif distinguished ARLA from other rheumatic diseases. Notably, the TCR-β motif was linked predominantly to HLA-DRB1*11 or 13 alleles, which differed from alleles in patients from North America. It also mapped primarily to T peripheral helper (Tph) cells, as opposed to classical Th1 cells. These findings provide a roadmap explaining how T cell responses necessary for control of an infection can, despite antibiotic therapy, drive a disadvantageous T cell response, resulting in a postinfectious, inflammatory arthritis.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI184109\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI184109","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
由布氏杆菌(Borrelia burgdorferi,Bb)引起的莱姆病可发展为莱姆关节炎(Lyme arthritis,LA)。虽然大多数莱姆病患者都能成功应对抗生素治疗,但也有一小部分患者的病情得不到改善,这种情况被称为抗生素难治性莱姆关节炎(ARLA)。众所周知,T细胞反应是ARLA的驱动因素,但ARLA的分子机制仍不清楚。在本期 JCI 杂志上,Dirks 等人从德国的 ARLA 患者体内分离出了疾病特异性 Th 细胞。一个独特的 TCR-β motif 将 ARLA 与其他风湿性疾病区分开来。值得注意的是,TCR-β图案主要与HLA-DRB1*11或13等位基因有关,这与北美患者的等位基因不同。它还主要与T外周辅助细胞(Tph)相对应,而非传统的Th1细胞。这些发现提供了一个路线图,解释了控制感染所需的 T 细胞反应如何在抗生素治疗的情况下驱动不利的 T 细胞反应,从而导致感染后炎症性关节炎。
Wider recognition and greater understanding of postinfectious, antibiotic-refractory Lyme arthritis.
Lyme disease, caused by Borrelia burgdorferi (Bb), can progress to Lyme arthritis (LA). While most patients with LA respond successfully to antibiotic therapy, a small percentage fail to improve, a condition known as antibiotic-refractory Lyme arthritis (ARLA). While T cell responses are known to drive ARLA, molecular mechanisms for ARLA remain unknown. In this issue of the JCI, Dirks et al. isolated disease-specific Th cells from patients with ARLA residing in Germany. A distinct TCR-β motif distinguished ARLA from other rheumatic diseases. Notably, the TCR-β motif was linked predominantly to HLA-DRB1*11 or 13 alleles, which differed from alleles in patients from North America. It also mapped primarily to T peripheral helper (Tph) cells, as opposed to classical Th1 cells. These findings provide a roadmap explaining how T cell responses necessary for control of an infection can, despite antibiotic therapy, drive a disadvantageous T cell response, resulting in a postinfectious, inflammatory arthritis.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.