印度哈里亚纳邦地表水中微塑料的丰度和分析特征。

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY Microscopy Research and Technique Pub Date : 2024-09-02 DOI:10.1002/jemt.24657
Nishita Narwal, Deeksha Katyal
{"title":"印度哈里亚纳邦地表水中微塑料的丰度和分析特征。","authors":"Nishita Narwal, Deeksha Katyal","doi":"10.1002/jemt.24657","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as \"low risk,\" it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The abundance and analytical characterization of microplastics in the surface water of Haryana, India.\",\"authors\":\"Nishita Narwal, Deeksha Katyal\",\"doi\":\"10.1002/jemt.24657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as \\\"low risk,\\\" it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24657\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24657","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微塑料(MP)污染已成为影响陆地环境、水生生态系统和人类健康的严重环境问题。目前的研究评估了印度哈里亚纳邦罗塔克地区地表水中 MPs 的存在、丰度和形态,该地区正在迅速经历工业化。在通过立体显微镜和场发射扫描电子显微镜(FE-SEM)对 MPs 进行形态研究的同时,还通过衰减全反射-傅立叶变换红外光谱(ATR-FTIR)分析了聚合物的元素组成。结果表明,地表水受到聚乙烯、聚丙烯和聚苯乙烯的严重污染。此外,还发现 MPs 的丰度为 16-28 颗粒/升,平均值为 23 颗粒/升。大多数多孔质微粒呈纤维状,具体形态为纤维(43.9%)、碎片(23.7%)、薄膜(17%)和颗粒(15.4%)。MPs 的尺寸范围为 0.61-4.87 毫米,平均尺寸为 2.03 ± 0.04 毫米。此外,地表水体的 MP 污染负荷指数值低于 10,表明属于低风险类别。虽然目前被定为 "低风险",但重要的是要在此时采取缓解策略,以进一步防止水质恶化。因此,本研究不仅要提出人类活动、工业废物、露天废物倾倒和不适当的城市废物管理方法对 MP 浓度增加的影响,还要强调解决城市水系统中这一新出现的污染物的可持续替代方法和战略。为了进一步预防,实施严格的法规和现场塑料废物分离是防止地表水体中塑料废物弃置的关键组成部分。研究亮点:发现 MPs 的丰度为 16-28 微粒/升,平均值为 23 微粒/升。罗塔克地区的地表水体属于低风险的危险类别,其值小于 10。所有五个地区水体中的总体 MP 浓度按颜色依次为:白色/透明(39.1%)、黑色(15%)、灰色 (9.1%)、绿色(8.7%)、蓝色(7.8%)、红色(7.8%)、橙色(6.3%)和黄色(6.1%)。根据傅立叶变换红外光谱测定,主要聚合物为聚乙烯(PE)(42%)和聚丙烯(41%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The abundance and analytical characterization of microplastics in the surface water of Haryana, India.

Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as "low risk," it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
期刊最新文献
In Situ Surface Exsolution of Chang'e-5 Lunar Soil Architected by the Trinity Effect of Electron Beam. The Melliferous Potential of the Mountainous Region of Azad Kashmir, Pakistan: Pollen Profiling of Honey Using Microscopy. Ultrastructural and Functional Organization of Maxillary Palps in Ladybird Species (Coleoptera: Coccinellidae) With Different Feeding Preferences. Green Synthesis of Selenium Nanoparticles Utilizing Drimia indica: Insights Into Anticancer and Antimicrobial Activities. Scanning Electron Microscopy of the Oropharyngeal Floor of Northern Bobwhite (Colinus virginianus, Linnaeus, 1758) Focusing on the Numerical and Regional Distribution of the Taste Buds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1