{"title":"硅酸钙水泥赋予低热释放和快速固化磷酸镁水泥以生物活性和持续机械强度。","authors":"Lijun Xie, Yan Zhang, Binji Cao, Xiaoyi Jiao, Xusong Yue, Yan Xu, Xianyan Yang, Guojing Yang, Yingjie Wang, Jian Shen, Cong Wang, Xisheng Weng, Zhongru Gou","doi":"10.1093/rb/rbae100","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that magnesium phosphate cements (MPCs) show appreciable mechanical strength and biocompatibility, but the hydration reaction processes often lead to intense heat release while the hydration products present weak resistance to mechanical decay and low bioactivity. Herein we developed an MPC-based system, which was low-heat-releasing and fast-curing in this study, by compounding with self-curing calcium silicate cements (CSCs). The MPC composed of magnesium oxide (MgO), potassium dihydrogen phosphate (KH<sub>2</sub>PO<sub>4</sub>), disodium hydrogen phosphate (Na<sub>2</sub>HPO<sub>4</sub>), magnesium hydrogen phosphate trihydrate (MgHPO<sub>4</sub>·3H<sub>2</sub>O) and chitosan were weakly basic, which would be more stable <i>in vivo</i>. The physicochemical properties indicated that the addition of CSCs could increase the final setting time while decrease the heat release. Meanwhile, the CSCs could endow MPC substrate with apatite re-mineralization reactivity, especially, which add 25 wt.% CSCs showed the most significant apatite deposition. What's more, the mechanical evolution in buffer demonstrated CSCs could enhance and sustain the mechanical strength during degradation, and the internal constructs of cement implants could still be reconstructed by μCT analysis in rabbit femoral bone defect model <i>in vivo</i>. Particularly, appropriate CSCs adjusted the biodegradation and promoted new bone tissue regeneration <i>in vivo</i>. Totally, the MPC/CSCs composite system endows bioactivity and sustains mechanical strength of the MPC, which may be promising for expending the clinical applications of MPC-based bone cements.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae100"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Calcium silicate cements endowing bioactivity and sustaining mechanical strength of low-heat-releasing and fast-curing magnesium phosphate cements.\",\"authors\":\"Lijun Xie, Yan Zhang, Binji Cao, Xiaoyi Jiao, Xusong Yue, Yan Xu, Xianyan Yang, Guojing Yang, Yingjie Wang, Jian Shen, Cong Wang, Xisheng Weng, Zhongru Gou\",\"doi\":\"10.1093/rb/rbae100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is known that magnesium phosphate cements (MPCs) show appreciable mechanical strength and biocompatibility, but the hydration reaction processes often lead to intense heat release while the hydration products present weak resistance to mechanical decay and low bioactivity. Herein we developed an MPC-based system, which was low-heat-releasing and fast-curing in this study, by compounding with self-curing calcium silicate cements (CSCs). The MPC composed of magnesium oxide (MgO), potassium dihydrogen phosphate (KH<sub>2</sub>PO<sub>4</sub>), disodium hydrogen phosphate (Na<sub>2</sub>HPO<sub>4</sub>), magnesium hydrogen phosphate trihydrate (MgHPO<sub>4</sub>·3H<sub>2</sub>O) and chitosan were weakly basic, which would be more stable <i>in vivo</i>. The physicochemical properties indicated that the addition of CSCs could increase the final setting time while decrease the heat release. Meanwhile, the CSCs could endow MPC substrate with apatite re-mineralization reactivity, especially, which add 25 wt.% CSCs showed the most significant apatite deposition. What's more, the mechanical evolution in buffer demonstrated CSCs could enhance and sustain the mechanical strength during degradation, and the internal constructs of cement implants could still be reconstructed by μCT analysis in rabbit femoral bone defect model <i>in vivo</i>. Particularly, appropriate CSCs adjusted the biodegradation and promoted new bone tissue regeneration <i>in vivo</i>. Totally, the MPC/CSCs composite system endows bioactivity and sustains mechanical strength of the MPC, which may be promising for expending the clinical applications of MPC-based bone cements.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae100\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae100\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae100","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Calcium silicate cements endowing bioactivity and sustaining mechanical strength of low-heat-releasing and fast-curing magnesium phosphate cements.
It is known that magnesium phosphate cements (MPCs) show appreciable mechanical strength and biocompatibility, but the hydration reaction processes often lead to intense heat release while the hydration products present weak resistance to mechanical decay and low bioactivity. Herein we developed an MPC-based system, which was low-heat-releasing and fast-curing in this study, by compounding with self-curing calcium silicate cements (CSCs). The MPC composed of magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4), disodium hydrogen phosphate (Na2HPO4), magnesium hydrogen phosphate trihydrate (MgHPO4·3H2O) and chitosan were weakly basic, which would be more stable in vivo. The physicochemical properties indicated that the addition of CSCs could increase the final setting time while decrease the heat release. Meanwhile, the CSCs could endow MPC substrate with apatite re-mineralization reactivity, especially, which add 25 wt.% CSCs showed the most significant apatite deposition. What's more, the mechanical evolution in buffer demonstrated CSCs could enhance and sustain the mechanical strength during degradation, and the internal constructs of cement implants could still be reconstructed by μCT analysis in rabbit femoral bone defect model in vivo. Particularly, appropriate CSCs adjusted the biodegradation and promoted new bone tissue regeneration in vivo. Totally, the MPC/CSCs composite system endows bioactivity and sustains mechanical strength of the MPC, which may be promising for expending the clinical applications of MPC-based bone cements.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.