基于大数据和 FRAM 的传染病流行风险分析模型。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.2147/RMHP.S476794
Junhua Zhu, Yue Zhuang, Wenjing Li
{"title":"基于大数据和 FRAM 的传染病流行风险分析模型。","authors":"Junhua Zhu, Yue Zhuang, Wenjing Li","doi":"10.2147/RMHP.S476794","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The use of multi-source precursor data to predict the epidemic risk level would aid in the early and timely identification of the epidemic risk of infectious diseases. To achieve this, a new comprehensive big data fusion assessment method must be developed.</p><p><strong>Methods: </strong>With the help of the Functional Resonance Analysis Method (FRAM) model, this paper proposes a risk portrait for the whole process of a pandemic spreading. Using medical, human behaviour, internet and geo-meteorological data, a hierarchical multi-source dataset was developed with three function module tags, ie, Basic Risk Factors (BRF), the Spread of Epidemic Threats (SET) and Risk Influencing Factors (RIF).</p><p><strong>Results: </strong>Using the dynamic functional network diagram of the risk assessment functional module, the FRAM portrait was applied to pandemic case analysis in Wuhan in 2020. This new-format FRAM portrait model offers a potential early and rapid risk assessment method that could be applied in future acute public health events.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368406/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Big Data and FRAM-Based Model for Epidemic Risk Analysis of Infectious Diseases.\",\"authors\":\"Junhua Zhu, Yue Zhuang, Wenjing Li\",\"doi\":\"10.2147/RMHP.S476794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The use of multi-source precursor data to predict the epidemic risk level would aid in the early and timely identification of the epidemic risk of infectious diseases. To achieve this, a new comprehensive big data fusion assessment method must be developed.</p><p><strong>Methods: </strong>With the help of the Functional Resonance Analysis Method (FRAM) model, this paper proposes a risk portrait for the whole process of a pandemic spreading. Using medical, human behaviour, internet and geo-meteorological data, a hierarchical multi-source dataset was developed with three function module tags, ie, Basic Risk Factors (BRF), the Spread of Epidemic Threats (SET) and Risk Influencing Factors (RIF).</p><p><strong>Results: </strong>Using the dynamic functional network diagram of the risk assessment functional module, the FRAM portrait was applied to pandemic case analysis in Wuhan in 2020. This new-format FRAM portrait model offers a potential early and rapid risk assessment method that could be applied in future acute public health events.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/RMHP.S476794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S476794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用多源前兆数据预测疫情风险水平有助于及早、及时地识别传染病的疫情风险。为此,必须开发一种新的综合性大数据融合评估方法:本文借助功能共振分析法(FRAM)模型,提出了疫情传播全过程的风险画像。方法:本文借助功能共振分析法(FRAM)模型,提出了大流行病传播全过程的风险画像。利用医疗、人类行为、互联网和地理气象数据,开发了一个分层多源数据集,其中包含三个功能模块标签,即基本风险因素(BRF)、流行病威胁传播(SET)和风险影响因素(RIF):利用风险评估功能模块的动态功能网络图,将 FRAM 画像应用于 2020 年武汉大流行病例分析。这种新形式的 FRAM 肖像模型提供了一种潜在的早期快速风险评估方法,可应用于未来的急性公共卫生事件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Big Data and FRAM-Based Model for Epidemic Risk Analysis of Infectious Diseases.

Purpose: The use of multi-source precursor data to predict the epidemic risk level would aid in the early and timely identification of the epidemic risk of infectious diseases. To achieve this, a new comprehensive big data fusion assessment method must be developed.

Methods: With the help of the Functional Resonance Analysis Method (FRAM) model, this paper proposes a risk portrait for the whole process of a pandemic spreading. Using medical, human behaviour, internet and geo-meteorological data, a hierarchical multi-source dataset was developed with three function module tags, ie, Basic Risk Factors (BRF), the Spread of Epidemic Threats (SET) and Risk Influencing Factors (RIF).

Results: Using the dynamic functional network diagram of the risk assessment functional module, the FRAM portrait was applied to pandemic case analysis in Wuhan in 2020. This new-format FRAM portrait model offers a potential early and rapid risk assessment method that could be applied in future acute public health events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1