ODD:基于自然语言处理的阿片类药物相关异常行为检测基准数据集。

Sunjae Kwon, Xun Wang, Weisong Liu, Emily Druhl, Minhee L Sung, Joel I Reisman, Wenjun Li, Robert D Kerns, William Becker, Hong Yu
{"title":"ODD:基于自然语言处理的阿片类药物相关异常行为检测基准数据集。","authors":"Sunjae Kwon, Xun Wang, Weisong Liu, Emily Druhl, Minhee L Sung, Joel I Reisman, Wenjun Li, Robert D Kerns, William Becker, Hong Yu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid related aberrant behaviors (ORABs) present novel risk factors for opioid overdose. This paper introduces a novel biomedical natural language processing benchmark dataset named ODD, for ORAB Detection Dataset. ODD is an expert-annotated dataset designed to identify ORABs from patients' EHR notes and classify them into nine categories; 1) Confirmed Aberrant Behavior, 2) Suggested Aberrant Behavior, 3) Opioids, 4) Indication, 5) Diagnosed opioid dependency, 6) Benzodiazepines, 7) Medication Changes, 8) Central Nervous System-related, and 9) Social Determinants of Health. We explored two state-of-the-art natural language processing models (fine-tuning and prompt-tuning approaches) to identify ORAB. Experimental results show that the prompt-tuning models outperformed the fine-tuning models in most categories and the gains were especially higher among uncommon categories (Suggested Aberrant Behavior, Confirmed Aberrant Behaviors, Diagnosed Opioid Dependence, and Medication Change). Although the best model achieved the highest 88.17% on macro average area under precision recall curve, uncommon classes still have a large room for performance improvement. ODD is publicly available.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2024 ","pages":"4338-4359"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368170/pdf/","citationCount":"0","resultStr":"{\"title\":\"ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection.\",\"authors\":\"Sunjae Kwon, Xun Wang, Weisong Liu, Emily Druhl, Minhee L Sung, Joel I Reisman, Wenjun Li, Robert D Kerns, William Becker, Hong Yu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Opioid related aberrant behaviors (ORABs) present novel risk factors for opioid overdose. This paper introduces a novel biomedical natural language processing benchmark dataset named ODD, for ORAB Detection Dataset. ODD is an expert-annotated dataset designed to identify ORABs from patients' EHR notes and classify them into nine categories; 1) Confirmed Aberrant Behavior, 2) Suggested Aberrant Behavior, 3) Opioids, 4) Indication, 5) Diagnosed opioid dependency, 6) Benzodiazepines, 7) Medication Changes, 8) Central Nervous System-related, and 9) Social Determinants of Health. We explored two state-of-the-art natural language processing models (fine-tuning and prompt-tuning approaches) to identify ORAB. Experimental results show that the prompt-tuning models outperformed the fine-tuning models in most categories and the gains were especially higher among uncommon categories (Suggested Aberrant Behavior, Confirmed Aberrant Behaviors, Diagnosed Opioid Dependence, and Medication Change). Although the best model achieved the highest 88.17% on macro average area under precision recall curve, uncommon classes still have a large room for performance improvement. ODD is publicly available.</p>\",\"PeriodicalId\":74542,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"volume\":\"2024 \",\"pages\":\"4338-4359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿片类药物相关异常行为(ORAB)是阿片类药物过量的新型风险因素。本文介绍了一种新的生物医学自然语言处理基准数据集,名为 ODD(ORAB Detection Dataset)。ODD 是一个由专家注释的数据集,旨在从患者的电子病历记录中识别 ORAB,并将其分为九类:1) 已确认的异常行为,2) 建议的异常行为,3) 阿片类药物,4) 适应症,5) 已诊断的阿片类药物依赖,6) 苯二氮卓类药物,7) 药物变化,8) 中枢神经系统相关,9) 阿片类药物过量。中枢神经系统相关,以及 9) 健康的社会决定因素。我们探索了两种最先进的自然语言处理模型(微调法和提示调整法)来识别 ORAB。实验结果表明,在大多数类别中,提示调整模型的表现优于微调模型,尤其是在不常见的类别(建议的异常行为、确认的异常行为、确诊的阿片类药物依赖和用药改变)中,提示调整模型的收益更高。虽然最佳模型在精确度召回曲线下的宏观平均面积上达到了最高的 88.17%,但不常见类别的性能仍有很大的提升空间。ODD 已公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection.

Opioid related aberrant behaviors (ORABs) present novel risk factors for opioid overdose. This paper introduces a novel biomedical natural language processing benchmark dataset named ODD, for ORAB Detection Dataset. ODD is an expert-annotated dataset designed to identify ORABs from patients' EHR notes and classify them into nine categories; 1) Confirmed Aberrant Behavior, 2) Suggested Aberrant Behavior, 3) Opioids, 4) Indication, 5) Diagnosed opioid dependency, 6) Benzodiazepines, 7) Medication Changes, 8) Central Nervous System-related, and 9) Social Determinants of Health. We explored two state-of-the-art natural language processing models (fine-tuning and prompt-tuning approaches) to identify ORAB. Experimental results show that the prompt-tuning models outperformed the fine-tuning models in most categories and the gains were especially higher among uncommon categories (Suggested Aberrant Behavior, Confirmed Aberrant Behaviors, Diagnosed Opioid Dependence, and Medication Change). Although the best model achieved the highest 88.17% on macro average area under precision recall curve, uncommon classes still have a large room for performance improvement. ODD is publicly available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1