Ting Hu , Yujun Wang , Li Ma , Zhanyong Wang , Haibin Tong
{"title":"一种来自门氏假单胞菌的胞外酯酶对聚丁二酸丁二醇酯的生物降解作用","authors":"Ting Hu , Yujun Wang , Li Ma , Zhanyong Wang , Haibin Tong","doi":"10.1016/j.ibiod.2024.105910","DOIUrl":null,"url":null,"abstract":"<div><p>An extracellular esterase (HP) with polybutylene succinate (PBS)-degrading ability was identified from <em>Pseudomonas mendocina</em> SA-1503. The HP also had the ability to degrade poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and polycaprolactone. This HP had optimal activity at pH 9.0 and 40 °C and remained stable at pH 8.0–9.0 and temperatures of 30–40 °C. Mn<sup>2+</sup> promoted the enzyme activity. HP could hydrolyze all <em>p</em>-NP fatty acid ester substrates containing even numbers of carbon atoms from C2 to C18 and had the highest catalytic activity for the <em>p</em>-NP C6 substrate. After 60 h of HP-catalyzed degradation, PBS films experienced a weight loss of more than 60%. Butanedioic acid, 1,4-butanediol, and a series of oligomers were detected in the degradation products of PBS by HP. Further structural analysis of HP revealed that it could be classified as a microbial esterase of <em>α</em>/<em>β</em> hydrolase superfamily and contained a conserved catalytic triad structure (Ser-148, Asp-198, and His-228) with a relatively exposed active site.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"195 ","pages":"Article 105910"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of polybutylene succinate by an extracellular esterase from Pseudomonas mendocina\",\"authors\":\"Ting Hu , Yujun Wang , Li Ma , Zhanyong Wang , Haibin Tong\",\"doi\":\"10.1016/j.ibiod.2024.105910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An extracellular esterase (HP) with polybutylene succinate (PBS)-degrading ability was identified from <em>Pseudomonas mendocina</em> SA-1503. The HP also had the ability to degrade poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and polycaprolactone. This HP had optimal activity at pH 9.0 and 40 °C and remained stable at pH 8.0–9.0 and temperatures of 30–40 °C. Mn<sup>2+</sup> promoted the enzyme activity. HP could hydrolyze all <em>p</em>-NP fatty acid ester substrates containing even numbers of carbon atoms from C2 to C18 and had the highest catalytic activity for the <em>p</em>-NP C6 substrate. After 60 h of HP-catalyzed degradation, PBS films experienced a weight loss of more than 60%. Butanedioic acid, 1,4-butanediol, and a series of oligomers were detected in the degradation products of PBS by HP. Further structural analysis of HP revealed that it could be classified as a microbial esterase of <em>α</em>/<em>β</em> hydrolase superfamily and contained a conserved catalytic triad structure (Ser-148, Asp-198, and His-228) with a relatively exposed active site.</p></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"195 \",\"pages\":\"Article 105910\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830524001811\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001811","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biodegradation of polybutylene succinate by an extracellular esterase from Pseudomonas mendocina
An extracellular esterase (HP) with polybutylene succinate (PBS)-degrading ability was identified from Pseudomonas mendocina SA-1503. The HP also had the ability to degrade poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and polycaprolactone. This HP had optimal activity at pH 9.0 and 40 °C and remained stable at pH 8.0–9.0 and temperatures of 30–40 °C. Mn2+ promoted the enzyme activity. HP could hydrolyze all p-NP fatty acid ester substrates containing even numbers of carbon atoms from C2 to C18 and had the highest catalytic activity for the p-NP C6 substrate. After 60 h of HP-catalyzed degradation, PBS films experienced a weight loss of more than 60%. Butanedioic acid, 1,4-butanediol, and a series of oligomers were detected in the degradation products of PBS by HP. Further structural analysis of HP revealed that it could be classified as a microbial esterase of α/β hydrolase superfamily and contained a conserved catalytic triad structure (Ser-148, Asp-198, and His-228) with a relatively exposed active site.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.