静态半参数马尔可夫模型中高斯共轭参数的信息边界

Pub Date : 2024-08-30 DOI:10.1016/j.spl.2024.110254
Xiaohong Chen , Yanping Yi
{"title":"静态半参数马尔可夫模型中高斯共轭参数的信息边界","authors":"Xiaohong Chen ,&nbsp;Yanping Yi","doi":"10.1016/j.spl.2024.110254","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We prove that <span><math><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span> is the semiparametric efficient variance bound for estimating the correlation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than <span><math><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></math></span> (when <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any <span><math><mrow><mi>i</mi><mo>.</mo><mi>i</mi><mo>.</mo><mi>d</mi><mo>.</mo></mrow></math></span> data <span><math><msubsup><mrow><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> generated from a bivariate Gaussian copula with two unknown marginal distributions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002232/pdfft?md5=b9102a8c83b499e2cb4081c8f8393ced&pid=1-s2.0-S0167715224002232-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Information bounds for Gaussian copula parameter in stationary semiparametric Markov models\",\"authors\":\"Xiaohong Chen ,&nbsp;Yanping Yi\",\"doi\":\"10.1016/j.spl.2024.110254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>t</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We prove that <span><math><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span> is the semiparametric efficient variance bound for estimating the correlation parameter <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than <span><math><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msubsup><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></math></span> (when <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any <span><math><mrow><mi>i</mi><mo>.</mo><mi>i</mi><mo>.</mo><mi>d</mi><mo>.</mo></mrow></math></span> data <span><math><msubsup><mrow><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> generated from a bivariate Gaussian copula with two unknown marginal distributions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002232/pdfft?md5=b9102a8c83b499e2cb4081c8f8393ced&pid=1-s2.0-S0167715224002232-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 {Vt}t=1n 是由未知不变边际分布和具有未知相关系数 α0∈(-1,1)的双变量高斯共线生成的单变量静止一阶半参数马尔可夫过程。我们证明,1-α02 是在任何高斯共轭生成的一阶静止马尔可夫模型中估计相关参数 α0 的半参数有效方差约束。令人惊讶的是,这个方差约束严格大于 1-α022(当 α0≠0 时),后者是 Klaassen 和 Wellner(1997 年)得出的半参数有效方差约束,用于使用由具有两个未知边际分布的二元高斯共线生成的任何 i.i.d. 数据 {(Xi,Yi)}i=1n,估计相关参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Information bounds for Gaussian copula parameter in stationary semiparametric Markov models

Let {Vt}t=1n be any univariate stationary first-order semiparametric Markov process generated from an unknown invariant marginal distribution and a bivariate Gaussian copula with unknown correlation coefficient α0(1,1). We prove that 1α02 is the semiparametric efficient variance bound for estimating the correlation parameter α0 in any Gaussian copula generated first-order stationary Markov models. Surprisingly, this variance bound is strictly larger than 1α022 (when α00), which is the semiparametric efficient variance bound derived by Klaassen and Wellner (1997) for estimating the correlation parameter using any i.i.d. data {(Xi,Yi)}i=1n generated from a bivariate Gaussian copula with two unknown marginal distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1