通过数据融合识别微地震信号的研究

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-08-31 DOI:10.1016/j.cageo.2024.105708
{"title":"通过数据融合识别微地震信号的研究","authors":"","doi":"10.1016/j.cageo.2024.105708","DOIUrl":null,"url":null,"abstract":"<div><p>The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on microseismic signal identification through data fusion\",\"authors\":\"\",\"doi\":\"10.1016/j.cageo.2024.105708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001912\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001912","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于多模态特征提取的双分支分类网络 DPNet(Double Path Net),用于微震和爆破信号的分类和识别。振动信号的一维频谱图和二维小波时频图被输入双分支网络。然后,利用卷积神经网络和 ResNet 分别提取振动信号的一维频率特性和二维时频特征。实验结果表明,我们提出的方法在微震信号和爆破信号的分类上取得了出色的成绩,准确率高达 97.34%。这项研究不仅为实际问题提供了创新性的解决方案,还在理论层面引入了多模态特征提取的新思路。通过将其成功应用于采矿工程中复杂信号的高效分类,我们提供了一种可行的解决方案,在该领域的实际应用中前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on microseismic signal identification through data fusion

The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
A reverse tracing of the water flow path algorithm for slope length extraction based on triangulated irregular network Rock-type classification: A (critical) machine-learning perspective Improving the training performance of generative adversarial networks with limited data: Application to the generation of geological models A hybrid inversion algorithm to obtain the resistivity of the uninvaded zone based on the array induction log Application of polynomial type elastic outer boundary conditions in fractal composite reservoir seepage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1