{"title":"改进天体物理环境中相同球体分形聚集体散射的平均场 T-Matrix 方法","authors":"","doi":"10.1016/j.icarus.2024.116247","DOIUrl":null,"url":null,"abstract":"<div><p>Aggregated particles and aerosols are common in natural or industrial environments. Analysing their scattering and absorption properties with precise methods may prove useful for gaining information about real particles, using remote sensing or in situ active optical instruments in natural environments. Many methods, with varying complexities, were developed in the past. For aggregates of spheres, the most recent version of the T-Matrix method by Mackowski and Mishchenko (2011) is able to treat the problem almost exactly and can yield all the details of the scattering properties. However, for computational reasons, the T-Matrix method cannot handle large particles. In order to deal with large particles, a mean-field version of the T-Matrix theory was developed by Botet et al. (1997) for aggregates of identical spheres and used in particular to analyse the case of Titan haze. This mean-field T-Matrix method is efficient to quickly calculate accurate approximations of many optical properties of aggregates of Mie spheres, but it is inherently limited by the mean field approximations. It uses crude approximation of the pair-correlation functions (Seignovert et al., 2017) and leads to inaccurate estimations in the geometrical optics limit (Tazaki and Tanaka, 2018). In the present work, we bring improvements that overcome these two limitations. This significantly increases the validity range of the method and its accuracy. We display comparisons with the results obtained with T-Matrix method in order to assess the performance of the new version of the mean field method (MFT-M<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>).</p></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of the Mean Field T-Matrix method for scattering by fractal aggregates of identical spheres in astrophysical environments\",\"authors\":\"\",\"doi\":\"10.1016/j.icarus.2024.116247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aggregated particles and aerosols are common in natural or industrial environments. Analysing their scattering and absorption properties with precise methods may prove useful for gaining information about real particles, using remote sensing or in situ active optical instruments in natural environments. Many methods, with varying complexities, were developed in the past. For aggregates of spheres, the most recent version of the T-Matrix method by Mackowski and Mishchenko (2011) is able to treat the problem almost exactly and can yield all the details of the scattering properties. However, for computational reasons, the T-Matrix method cannot handle large particles. In order to deal with large particles, a mean-field version of the T-Matrix theory was developed by Botet et al. (1997) for aggregates of identical spheres and used in particular to analyse the case of Titan haze. This mean-field T-Matrix method is efficient to quickly calculate accurate approximations of many optical properties of aggregates of Mie spheres, but it is inherently limited by the mean field approximations. It uses crude approximation of the pair-correlation functions (Seignovert et al., 2017) and leads to inaccurate estimations in the geometrical optics limit (Tazaki and Tanaka, 2018). In the present work, we bring improvements that overcome these two limitations. This significantly increases the validity range of the method and its accuracy. We display comparisons with the results obtained with T-Matrix method in order to assess the performance of the new version of the mean field method (MFT-M<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span>).</p></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524003075\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003075","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Improvement of the Mean Field T-Matrix method for scattering by fractal aggregates of identical spheres in astrophysical environments
Aggregated particles and aerosols are common in natural or industrial environments. Analysing their scattering and absorption properties with precise methods may prove useful for gaining information about real particles, using remote sensing or in situ active optical instruments in natural environments. Many methods, with varying complexities, were developed in the past. For aggregates of spheres, the most recent version of the T-Matrix method by Mackowski and Mishchenko (2011) is able to treat the problem almost exactly and can yield all the details of the scattering properties. However, for computational reasons, the T-Matrix method cannot handle large particles. In order to deal with large particles, a mean-field version of the T-Matrix theory was developed by Botet et al. (1997) for aggregates of identical spheres and used in particular to analyse the case of Titan haze. This mean-field T-Matrix method is efficient to quickly calculate accurate approximations of many optical properties of aggregates of Mie spheres, but it is inherently limited by the mean field approximations. It uses crude approximation of the pair-correlation functions (Seignovert et al., 2017) and leads to inaccurate estimations in the geometrical optics limit (Tazaki and Tanaka, 2018). In the present work, we bring improvements that overcome these two limitations. This significantly increases the validity range of the method and its accuracy. We display comparisons with the results obtained with T-Matrix method in order to assess the performance of the new version of the mean field method (MFT-M).
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.