Liangtong Zhan , Ziang Wang , Yongfeng Deng , Qiang Zeng , Ping Chen , Yunmin Chen
{"title":"将硅质和钙质废物水热固化成建筑材料:通用混合设计框架","authors":"Liangtong Zhan , Ziang Wang , Yongfeng Deng , Qiang Zeng , Ping Chen , Yunmin Chen","doi":"10.1016/j.dibe.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of inactive components in siliceous and calcareous wastes tends to cause a misunderstanding in their mix design for hydrothermal solidification. The contents of typical reactive elements (i.e. Ca<sub>act</sub>, Si<sub>act</sub> and Al<sub>act</sub>) in raw materials are quickly determined by simulating hydrothermal conditions. A generic mix design framework is proposed, which utilizes the molar ratio of Ca<sub>act</sub>/Si<sub>act</sub> as the controlling parameter. The framework was demonstrated through a series of studies, which involved the production of granular materials using a mixture of clayey soil with slaked lime, as well as the production of compacted cylinders using a mixture of clayey soil with either slaked lime or calcium carbide slag. Experimental results showed that the hydrothermal samples achieved their maximum strength when the molar ratio of Ca<sub>act</sub>/Si<sub>act</sub> in raw materials approached the theoretical Ca/Si molar ratio (i.e. 0.83) in tobermorite, provided that the molar ratio of Al<sub>act</sub>/(Al<sub>act</sub> + Si<sub>act</sub>) remained below 21%.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100534"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924002151/pdfft?md5=bead1c2807d116a736db2f38f752dd68&pid=1-s2.0-S2666165924002151-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal solidification of siliceous and calcareous wastes into building materials: A generic mix design framework\",\"authors\":\"Liangtong Zhan , Ziang Wang , Yongfeng Deng , Qiang Zeng , Ping Chen , Yunmin Chen\",\"doi\":\"10.1016/j.dibe.2024.100534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The presence of inactive components in siliceous and calcareous wastes tends to cause a misunderstanding in their mix design for hydrothermal solidification. The contents of typical reactive elements (i.e. Ca<sub>act</sub>, Si<sub>act</sub> and Al<sub>act</sub>) in raw materials are quickly determined by simulating hydrothermal conditions. A generic mix design framework is proposed, which utilizes the molar ratio of Ca<sub>act</sub>/Si<sub>act</sub> as the controlling parameter. The framework was demonstrated through a series of studies, which involved the production of granular materials using a mixture of clayey soil with slaked lime, as well as the production of compacted cylinders using a mixture of clayey soil with either slaked lime or calcium carbide slag. Experimental results showed that the hydrothermal samples achieved their maximum strength when the molar ratio of Ca<sub>act</sub>/Si<sub>act</sub> in raw materials approached the theoretical Ca/Si molar ratio (i.e. 0.83) in tobermorite, provided that the molar ratio of Al<sub>act</sub>/(Al<sub>act</sub> + Si<sub>act</sub>) remained below 21%.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"19 \",\"pages\":\"Article 100534\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002151/pdfft?md5=bead1c2807d116a736db2f38f752dd68&pid=1-s2.0-S2666165924002151-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924002151\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924002151","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Hydrothermal solidification of siliceous and calcareous wastes into building materials: A generic mix design framework
The presence of inactive components in siliceous and calcareous wastes tends to cause a misunderstanding in their mix design for hydrothermal solidification. The contents of typical reactive elements (i.e. Caact, Siact and Alact) in raw materials are quickly determined by simulating hydrothermal conditions. A generic mix design framework is proposed, which utilizes the molar ratio of Caact/Siact as the controlling parameter. The framework was demonstrated through a series of studies, which involved the production of granular materials using a mixture of clayey soil with slaked lime, as well as the production of compacted cylinders using a mixture of clayey soil with either slaked lime or calcium carbide slag. Experimental results showed that the hydrothermal samples achieved their maximum strength when the molar ratio of Caact/Siact in raw materials approached the theoretical Ca/Si molar ratio (i.e. 0.83) in tobermorite, provided that the molar ratio of Alact/(Alact + Siact) remained below 21%.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.