三重种群适应性差异进化

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-08-28 DOI:10.1016/j.ins.2024.121401
{"title":"三重种群适应性差异进化","authors":"","doi":"10.1016/j.ins.2024.121401","DOIUrl":null,"url":null,"abstract":"<div><p>The Differential Evolution (DE) algorithm is one of the most efficient algorithms for complex numerical optimization. However, the nature of differential mutation and crossover hinders the individuals from a major change and always guides them toward their superior neighbors. There's a lack of useful directional information to help the population escape from early convergence. To solve the above problem, this paper proposes a novel Triple-population-based Adaptive Differential Evolution (TPADE) to enhance the evolutionary efficiency in solving various complex numerical optimization problems. First, a population division method with symmetrical linear reduction is designed to divide the parent population of each iteration into three sub-populations of different sizes, i.e., superior sub-population, medium sub-population, and inferior sub-population. Each sub-population adopts distinct differential mutation and crossover operators to maintain balanced search directions. Second, a superior-trial-preserved selection mechanism is proposed to screen useful directional information to guide the next iteration of evolution. Third, an effective parameter adaptation strategy is designed with the linear population size reduction strategy to avoid redundant search. Experiments are then conducted to show that the TPADE exhibits well performance compared with eleven state-of-the-art DE variants, CEC winners, and their variants on the CEC'2014, CEC'2017, and CEC'2022 benchmark suites. The C++ source code of TPADE can be downloaded from <span><span>https://github.com/DoubleGong/TPADE</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A triple population adaptive differential evolution\",\"authors\":\"\",\"doi\":\"10.1016/j.ins.2024.121401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Differential Evolution (DE) algorithm is one of the most efficient algorithms for complex numerical optimization. However, the nature of differential mutation and crossover hinders the individuals from a major change and always guides them toward their superior neighbors. There's a lack of useful directional information to help the population escape from early convergence. To solve the above problem, this paper proposes a novel Triple-population-based Adaptive Differential Evolution (TPADE) to enhance the evolutionary efficiency in solving various complex numerical optimization problems. First, a population division method with symmetrical linear reduction is designed to divide the parent population of each iteration into three sub-populations of different sizes, i.e., superior sub-population, medium sub-population, and inferior sub-population. Each sub-population adopts distinct differential mutation and crossover operators to maintain balanced search directions. Second, a superior-trial-preserved selection mechanism is proposed to screen useful directional information to guide the next iteration of evolution. Third, an effective parameter adaptation strategy is designed with the linear population size reduction strategy to avoid redundant search. Experiments are then conducted to show that the TPADE exhibits well performance compared with eleven state-of-the-art DE variants, CEC winners, and their variants on the CEC'2014, CEC'2017, and CEC'2022 benchmark suites. The C++ source code of TPADE can be downloaded from <span><span>https://github.com/DoubleGong/TPADE</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002002552401315X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552401315X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

差分进化(DE)算法是复杂数值优化最有效的算法之一。然而,差分突变和交叉的性质阻碍了个体发生重大变化,并总是引导它们向其优越的邻居靠拢。缺乏有用的方向信息来帮助种群摆脱早期收敛。为了解决上述问题,本文提出了一种新颖的基于三种群的自适应差分进化(TPADE),以提高解决各种复杂数值优化问题的进化效率。首先,设计了一种对称线性削减的种群划分方法,将每次迭代的父种群划分为三个不同大小的子种群,即优等子种群、中等子种群和劣等子种群。每个子群采用不同的差分突变和交叉算子,以保持搜索方向的平衡。其次,提出了一种上等试验保留选择机制,以筛选有用的方向信息,指导下一次迭代进化。第三,设计了一种有效的参数适应策略和线性种群规模缩小策略,以避免冗余搜索。随后进行的实验表明,在CEC'2014、CEC'2017和CEC'2022基准套件上,TPADE与11种最先进的DE变体、CEC优胜者及其变体相比,表现出良好的性能。TPADE 的 C++ 源代码可从 https://github.com/DoubleGong/TPADE 下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A triple population adaptive differential evolution

The Differential Evolution (DE) algorithm is one of the most efficient algorithms for complex numerical optimization. However, the nature of differential mutation and crossover hinders the individuals from a major change and always guides them toward their superior neighbors. There's a lack of useful directional information to help the population escape from early convergence. To solve the above problem, this paper proposes a novel Triple-population-based Adaptive Differential Evolution (TPADE) to enhance the evolutionary efficiency in solving various complex numerical optimization problems. First, a population division method with symmetrical linear reduction is designed to divide the parent population of each iteration into three sub-populations of different sizes, i.e., superior sub-population, medium sub-population, and inferior sub-population. Each sub-population adopts distinct differential mutation and crossover operators to maintain balanced search directions. Second, a superior-trial-preserved selection mechanism is proposed to screen useful directional information to guide the next iteration of evolution. Third, an effective parameter adaptation strategy is designed with the linear population size reduction strategy to avoid redundant search. Experiments are then conducted to show that the TPADE exhibits well performance compared with eleven state-of-the-art DE variants, CEC winners, and their variants on the CEC'2014, CEC'2017, and CEC'2022 benchmark suites. The C++ source code of TPADE can be downloaded from https://github.com/DoubleGong/TPADE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Wavelet structure-texture-aware super-resolution for pedestrian detection HVASR: Enhancing 360-degree video delivery with viewport-aware super resolution KNEG-CL: Unveiling data patterns using a k-nearest neighbor evolutionary graph for efficient clustering Fréchet and Gateaux gH-differentiability for interval valued functions of multiple variables Detecting fuzzy-rough conditional anomalies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1