{"title":"EHPR:基于四元数的学习进化层次感知表示法,用于完成时态知识图谱","authors":"","doi":"10.1016/j.ins.2024.121409","DOIUrl":null,"url":null,"abstract":"<div><p>Research on temporal knowledge graphs garners attention due to the intricate connection between facts and dynamic temporal factors. However, existing research uses timestamp as auxiliary data for representation learning and directly integrate it into facts, resulting in the inability to capture the intrinsic connections between relations under time evolution. To handle these challenges, we propose the <strong>E</strong>volutionary <strong>H</strong>ierarchy <strong>P</strong>erception <strong>R</strong>epresentation (EHPR), which first leverages the Hamilton product to perform rotational transformations on relation and entity over time, aiming to learn temporal relation and temporal entity with close interactions with time information. Later, EHPR is divided into two modules: (a) Rotating the head entity towards the tail entity using temporal relation through Hamilton product to model complex patterns with quaternion rotation capabilities. (b) Adopting an evolutionary hierarchical factor to capture the differences in modulus distribution between the temporal head entity and the temporal tail entity, aiming to manage the evolutionary hierarchical information between different temporal entities. In this way, EHPR not only utilizes the rich quaternion rotation capabilities to model various relation patterns but also further enables modeling of evolutionary hierarchical patterns through evolutionary hierarchy factors. Experiments show that EHPR achieves remarkable performance on six mature benchmarks compared to state-of-the-art models. Furthermore, we successfully transferred the core idea of EHPR into complex embeddings, showcasing the framework's adaptability. Compared to complex embedding models, EHPR also demonstrates stronger expressive abilities with the Hamilton operator, surpassing the performance of complex Hermitian operator.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EHPR: Learning evolutionary hierarchy perception representation based on quaternion for temporal knowledge graph completion\",\"authors\":\"\",\"doi\":\"10.1016/j.ins.2024.121409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Research on temporal knowledge graphs garners attention due to the intricate connection between facts and dynamic temporal factors. However, existing research uses timestamp as auxiliary data for representation learning and directly integrate it into facts, resulting in the inability to capture the intrinsic connections between relations under time evolution. To handle these challenges, we propose the <strong>E</strong>volutionary <strong>H</strong>ierarchy <strong>P</strong>erception <strong>R</strong>epresentation (EHPR), which first leverages the Hamilton product to perform rotational transformations on relation and entity over time, aiming to learn temporal relation and temporal entity with close interactions with time information. Later, EHPR is divided into two modules: (a) Rotating the head entity towards the tail entity using temporal relation through Hamilton product to model complex patterns with quaternion rotation capabilities. (b) Adopting an evolutionary hierarchical factor to capture the differences in modulus distribution between the temporal head entity and the temporal tail entity, aiming to manage the evolutionary hierarchical information between different temporal entities. In this way, EHPR not only utilizes the rich quaternion rotation capabilities to model various relation patterns but also further enables modeling of evolutionary hierarchical patterns through evolutionary hierarchy factors. Experiments show that EHPR achieves remarkable performance on six mature benchmarks compared to state-of-the-art models. Furthermore, we successfully transferred the core idea of EHPR into complex embeddings, showcasing the framework's adaptability. Compared to complex embedding models, EHPR also demonstrates stronger expressive abilities with the Hamilton operator, surpassing the performance of complex Hermitian operator.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524013239\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524013239","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
EHPR: Learning evolutionary hierarchy perception representation based on quaternion for temporal knowledge graph completion
Research on temporal knowledge graphs garners attention due to the intricate connection between facts and dynamic temporal factors. However, existing research uses timestamp as auxiliary data for representation learning and directly integrate it into facts, resulting in the inability to capture the intrinsic connections between relations under time evolution. To handle these challenges, we propose the Evolutionary Hierarchy Perception Representation (EHPR), which first leverages the Hamilton product to perform rotational transformations on relation and entity over time, aiming to learn temporal relation and temporal entity with close interactions with time information. Later, EHPR is divided into two modules: (a) Rotating the head entity towards the tail entity using temporal relation through Hamilton product to model complex patterns with quaternion rotation capabilities. (b) Adopting an evolutionary hierarchical factor to capture the differences in modulus distribution between the temporal head entity and the temporal tail entity, aiming to manage the evolutionary hierarchical information between different temporal entities. In this way, EHPR not only utilizes the rich quaternion rotation capabilities to model various relation patterns but also further enables modeling of evolutionary hierarchical patterns through evolutionary hierarchy factors. Experiments show that EHPR achieves remarkable performance on six mature benchmarks compared to state-of-the-art models. Furthermore, we successfully transferred the core idea of EHPR into complex embeddings, showcasing the framework's adaptability. Compared to complex embedding models, EHPR also demonstrates stronger expressive abilities with the Hamilton operator, surpassing the performance of complex Hermitian operator.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.