{"title":"带有二次曲率项的 f(R,T) 重力模型的后期时间幻影特征","authors":"Shaily , A. Singh , J.K. Singh , S. Ray","doi":"10.1016/j.ascom.2024.100876","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel cosmological framework within the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> type modified gravity theory, incorporating a non-minimally coupled with the higher order of the Ricci scalar (<span><math><mi>R</mi></math></span>) as well as the trace of the energy–momentum tensor (<span><math><mi>T</mi></math></span>). Therefore, our well-motivated chosen <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> expression is <span><math><mrow><mi>R</mi><mo>+</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>λ</mi><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, where <span><math><mi>λ</mi></math></span>, <span><math><mi>m</mi></math></span>, and <span><math><mi>n</mi></math></span> are arbitrary constants. Taking a constant jerk parameter (<span><math><mi>j</mi></math></span>), we derive expressions for the deceleration parameter (<span><math><mi>q</mi></math></span>) and the Hubble parameter (<span><math><mi>H</mi></math></span>) as functions of the redshift <span><math><mi>z</mi></math></span>. We constrained our model with the recent Observational Hubble Dataset (OHD), <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span>, and <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span> + OHD datasets by using the analysis of Markov Chain Monte Carlo (MCMC). Our model shows early deceleration followed by late-time acceleration, with the transition occurring in the redshift range <span><math><mrow><mn>1</mn><mo>.</mo><mn>10</mn><mo>≤</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi><mi>r</mi></mrow></msub><mo>≤</mo><mn>1</mn><mo>.</mo><mn>15</mn></mrow></math></span>. Our findings suggest that this higher-order model of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity theory can efficiently provide a dark energy model for addressing the current scenario of cosmic acceleration.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100876"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late time phantom characteristic of the model in f(R,T) gravity with quadratic curvature term\",\"authors\":\"Shaily , A. Singh , J.K. Singh , S. Ray\",\"doi\":\"10.1016/j.ascom.2024.100876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel cosmological framework within the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> type modified gravity theory, incorporating a non-minimally coupled with the higher order of the Ricci scalar (<span><math><mi>R</mi></math></span>) as well as the trace of the energy–momentum tensor (<span><math><mi>T</mi></math></span>). Therefore, our well-motivated chosen <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> expression is <span><math><mrow><mi>R</mi><mo>+</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mn>2</mn><mi>λ</mi><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, where <span><math><mi>λ</mi></math></span>, <span><math><mi>m</mi></math></span>, and <span><math><mi>n</mi></math></span> are arbitrary constants. Taking a constant jerk parameter (<span><math><mi>j</mi></math></span>), we derive expressions for the deceleration parameter (<span><math><mi>q</mi></math></span>) and the Hubble parameter (<span><math><mi>H</mi></math></span>) as functions of the redshift <span><math><mi>z</mi></math></span>. We constrained our model with the recent Observational Hubble Dataset (OHD), <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span>, and <span><math><mrow><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><mi>n</mi></mrow></math></span> + OHD datasets by using the analysis of Markov Chain Monte Carlo (MCMC). Our model shows early deceleration followed by late-time acceleration, with the transition occurring in the redshift range <span><math><mrow><mn>1</mn><mo>.</mo><mn>10</mn><mo>≤</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi><mi>r</mi></mrow></msub><mo>≤</mo><mn>1</mn><mo>.</mo><mn>15</mn></mrow></math></span>. Our findings suggest that this higher-order model of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity theory can efficiently provide a dark energy model for addressing the current scenario of cosmic acceleration.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"49 \",\"pages\":\"Article 100876\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221313372400091X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221313372400091X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们在 f(R,T) 型修正引力理论中提出了一个新的宇宙学框架,其中包含了与高阶利玛窦标量(R)以及能动张量迹(T)的非最小耦合。因此,我们选择的 f(R,T) 表达式为 R+Rm+2λTn,其中 λ、m 和 n 是任意常数。我们利用最近的哈勃观测数据集(Observational Hubble Dataset,OHD)、潘神数据集(Pantheon)和潘神+ OHD数据集,通过马尔可夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)分析,对我们的模型进行了约束。我们的模型显示,早期减速,晚期加速,过渡发生在红移范围 1.10≤ztr≤1.15。我们的研究结果表明,f(R,T)引力理论的高阶模型可以有效地提供一个暗能量模型来解决目前宇宙加速的问题。
Late time phantom characteristic of the model in f(R,T) gravity with quadratic curvature term
We propose a novel cosmological framework within the type modified gravity theory, incorporating a non-minimally coupled with the higher order of the Ricci scalar () as well as the trace of the energy–momentum tensor (). Therefore, our well-motivated chosen expression is , where , , and are arbitrary constants. Taking a constant jerk parameter (), we derive expressions for the deceleration parameter () and the Hubble parameter () as functions of the redshift . We constrained our model with the recent Observational Hubble Dataset (OHD), , and + OHD datasets by using the analysis of Markov Chain Monte Carlo (MCMC). Our model shows early deceleration followed by late-time acceleration, with the transition occurring in the redshift range . Our findings suggest that this higher-order model of gravity theory can efficiently provide a dark energy model for addressing the current scenario of cosmic acceleration.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.