{"title":"根据偏好将病人分配到疗养院","authors":"R.J. Arntzen , R. Bekker , R.D. van der Mei","doi":"10.1016/j.orhc.2024.100442","DOIUrl":null,"url":null,"abstract":"<div><p>In many countries, the rapid aging of the population leads to an additional burden on already stretched long-term care systems. This often manifests itself in excessive waiting times for long-term care centers, and in abandonments (i.e., patients passing away while they are waiting). Interestingly, in practice, long waiting times are not caused by a lack of available total capacity in the system, but by systematic inefficiencies in the allocation of patients, each with their personal preferences and (in)flexibility, to geographically distributed care centers.</p><p>Motivated by this, we propose a new and easy-to-implement method for the optimal allocation of patients-in-need to nursing homes, balancing the trade-off between the waiting time performance and the individual patients’ preferences and levels of flexibility. The optimal placement policy found by solving a Markov Decision Process demonstrates that for small instances, the mean optimality gap of the allocation model is equal to 1. 3%. We validate a simulation model for a real-life use case of allocating somatic patients to nursing homes in the Amsterdam area. The results show that if more patient replacements are approved, the allocation model can reduce the abandonment fraction under the current policy from 32.2% to 7.4% and waiting times at the same time. Moreover, with the allocation model individual preferences can be served better, which thus provides a powerful means to face the increasing need for patient-centered and sustainable long-term care solutions.</p></div>","PeriodicalId":46320,"journal":{"name":"Operations Research for Health Care","volume":"42 ","pages":"Article 100442"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211692324000237/pdfft?md5=1ff89ed516df0e27c78fae8dc970cfc3&pid=1-s2.0-S2211692324000237-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Preference-based allocation of patients to nursing homes\",\"authors\":\"R.J. Arntzen , R. Bekker , R.D. van der Mei\",\"doi\":\"10.1016/j.orhc.2024.100442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In many countries, the rapid aging of the population leads to an additional burden on already stretched long-term care systems. This often manifests itself in excessive waiting times for long-term care centers, and in abandonments (i.e., patients passing away while they are waiting). Interestingly, in practice, long waiting times are not caused by a lack of available total capacity in the system, but by systematic inefficiencies in the allocation of patients, each with their personal preferences and (in)flexibility, to geographically distributed care centers.</p><p>Motivated by this, we propose a new and easy-to-implement method for the optimal allocation of patients-in-need to nursing homes, balancing the trade-off between the waiting time performance and the individual patients’ preferences and levels of flexibility. The optimal placement policy found by solving a Markov Decision Process demonstrates that for small instances, the mean optimality gap of the allocation model is equal to 1. 3%. We validate a simulation model for a real-life use case of allocating somatic patients to nursing homes in the Amsterdam area. The results show that if more patient replacements are approved, the allocation model can reduce the abandonment fraction under the current policy from 32.2% to 7.4% and waiting times at the same time. Moreover, with the allocation model individual preferences can be served better, which thus provides a powerful means to face the increasing need for patient-centered and sustainable long-term care solutions.</p></div>\",\"PeriodicalId\":46320,\"journal\":{\"name\":\"Operations Research for Health Care\",\"volume\":\"42 \",\"pages\":\"Article 100442\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211692324000237/pdfft?md5=1ff89ed516df0e27c78fae8dc970cfc3&pid=1-s2.0-S2211692324000237-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research for Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211692324000237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research for Health Care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211692324000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Preference-based allocation of patients to nursing homes
In many countries, the rapid aging of the population leads to an additional burden on already stretched long-term care systems. This often manifests itself in excessive waiting times for long-term care centers, and in abandonments (i.e., patients passing away while they are waiting). Interestingly, in practice, long waiting times are not caused by a lack of available total capacity in the system, but by systematic inefficiencies in the allocation of patients, each with their personal preferences and (in)flexibility, to geographically distributed care centers.
Motivated by this, we propose a new and easy-to-implement method for the optimal allocation of patients-in-need to nursing homes, balancing the trade-off between the waiting time performance and the individual patients’ preferences and levels of flexibility. The optimal placement policy found by solving a Markov Decision Process demonstrates that for small instances, the mean optimality gap of the allocation model is equal to 1. 3%. We validate a simulation model for a real-life use case of allocating somatic patients to nursing homes in the Amsterdam area. The results show that if more patient replacements are approved, the allocation model can reduce the abandonment fraction under the current policy from 32.2% to 7.4% and waiting times at the same time. Moreover, with the allocation model individual preferences can be served better, which thus provides a powerful means to face the increasing need for patient-centered and sustainable long-term care solutions.