{"title":"平面内和厚度内辅助复合材料层压板的分析设计","authors":"","doi":"10.1016/j.jcomc.2024.100500","DOIUrl":null,"url":null,"abstract":"<div><p>Auxetic composite laminates, i.e. laminates with a NPR (Negative Poisson’s Ratio), are regarded as a promising solution to combat LVI (Low-velocity impact) delamination BVID (Barely visible internal damage) and ensuing property degradation, a cause for concern in aerospace components, mainly inflicted by fortuitous accidents during handling operations. In order to potentiate the auxetic effect through the minimization of the Poisson’s ratio, a thorough analysis of material properties and stacking sequences is required, as only a restricted domain of combinations can generate the desired effect, either in an IP (In-plane) or TTT (Through-the-thickness) configuration. This paper focuses on a MATLAB program developed for IP and TTT auxetic laminate design, based on the CLT (Classical Lamination Theory). Cases studies on NPR domain definition of C/E (Carbon/epoxy), G/E (Glass/epoxy) and hybrid C-G/E (Carbon-Glass/epoxy) laminates are presented. Moreover, the influence of fibre volume fraction on C/E and G/E laminates is analysed.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000690/pdfft?md5=381f52920d1aaa35fffcc77b51058b45&pid=1-s2.0-S2666682024000690-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytical design of in-plane and through-the-thickness auxetic composite laminates\",\"authors\":\"\",\"doi\":\"10.1016/j.jcomc.2024.100500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Auxetic composite laminates, i.e. laminates with a NPR (Negative Poisson’s Ratio), are regarded as a promising solution to combat LVI (Low-velocity impact) delamination BVID (Barely visible internal damage) and ensuing property degradation, a cause for concern in aerospace components, mainly inflicted by fortuitous accidents during handling operations. In order to potentiate the auxetic effect through the minimization of the Poisson’s ratio, a thorough analysis of material properties and stacking sequences is required, as only a restricted domain of combinations can generate the desired effect, either in an IP (In-plane) or TTT (Through-the-thickness) configuration. This paper focuses on a MATLAB program developed for IP and TTT auxetic laminate design, based on the CLT (Classical Lamination Theory). Cases studies on NPR domain definition of C/E (Carbon/epoxy), G/E (Glass/epoxy) and hybrid C-G/E (Carbon-Glass/epoxy) laminates are presented. Moreover, the influence of fibre volume fraction on C/E and G/E laminates is analysed.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000690/pdfft?md5=381f52920d1aaa35fffcc77b51058b45&pid=1-s2.0-S2666682024000690-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Analytical design of in-plane and through-the-thickness auxetic composite laminates
Auxetic composite laminates, i.e. laminates with a NPR (Negative Poisson’s Ratio), are regarded as a promising solution to combat LVI (Low-velocity impact) delamination BVID (Barely visible internal damage) and ensuing property degradation, a cause for concern in aerospace components, mainly inflicted by fortuitous accidents during handling operations. In order to potentiate the auxetic effect through the minimization of the Poisson’s ratio, a thorough analysis of material properties and stacking sequences is required, as only a restricted domain of combinations can generate the desired effect, either in an IP (In-plane) or TTT (Through-the-thickness) configuration. This paper focuses on a MATLAB program developed for IP and TTT auxetic laminate design, based on the CLT (Classical Lamination Theory). Cases studies on NPR domain definition of C/E (Carbon/epoxy), G/E (Glass/epoxy) and hybrid C-G/E (Carbon-Glass/epoxy) laminates are presented. Moreover, the influence of fibre volume fraction on C/E and G/E laminates is analysed.