Dr. Wooyoung Jin, Dr. Gyujin Song, Dr. Jung-Keun Yoo, Prof. Sung-Kyun Jung, Dr. Tae-Hee Kim, Dr. Jinsoo Kim
{"title":"封面:干电极技术的进步:实现可持续和高效的电池制造(ChemElectroChem 17/2024)","authors":"Dr. Wooyoung Jin, Dr. Gyujin Song, Dr. Jung-Keun Yoo, Prof. Sung-Kyun Jung, Dr. Tae-Hee Kim, Dr. Jinsoo Kim","doi":"10.1002/celc.202481701","DOIUrl":null,"url":null,"abstract":"<p><b>The front cover</b> illustrates a comparison between the wet and dry electrode coating processes for Li-ion batteries. On the left side, the wet electrode coating process is depicted, requiring a lengthy drying process and generating toxic solvents. This is represented by a background of a heavily polluted city with smog and emissions. On the right side, the dry electrode coating process, which does not require drying or the use of solvents, is shown as eco-friendly. This is depicted by an electric vehicle equipped with batteries made using the dry process, maintaining a clean and green city environment. More information can be found in the Review Article by Tae-Hee Kim, Jinsoo Kim, and co-workers (DOI: 10.1002/celc.202400288). Cover design by Cube3D Graphic.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202481701","citationCount":"0","resultStr":"{\"title\":\"Front Cover: Advancements in Dry Electrode Technologies: Towards Sustainable and Efficient Battery Manufacturing (ChemElectroChem 17/2024)\",\"authors\":\"Dr. Wooyoung Jin, Dr. Gyujin Song, Dr. Jung-Keun Yoo, Prof. Sung-Kyun Jung, Dr. Tae-Hee Kim, Dr. Jinsoo Kim\",\"doi\":\"10.1002/celc.202481701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The front cover</b> illustrates a comparison between the wet and dry electrode coating processes for Li-ion batteries. On the left side, the wet electrode coating process is depicted, requiring a lengthy drying process and generating toxic solvents. This is represented by a background of a heavily polluted city with smog and emissions. On the right side, the dry electrode coating process, which does not require drying or the use of solvents, is shown as eco-friendly. This is depicted by an electric vehicle equipped with batteries made using the dry process, maintaining a clean and green city environment. More information can be found in the Review Article by Tae-Hee Kim, Jinsoo Kim, and co-workers (DOI: 10.1002/celc.202400288). Cover design by Cube3D Graphic.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202481701\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202481701\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202481701","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
封面展示了锂离子电池湿法和干法电极涂层工艺的比较。左侧描绘的是湿电极涂层工艺,需要漫长的干燥过程并产生有毒溶剂。背景是一个烟雾和废气严重污染的城市。右侧是干式电极涂层工艺,不需要干燥或使用溶剂,是一种环保工艺。一辆装有使用干法工艺制造的电池的电动汽车就是这样描绘的,它维护了一个清洁和绿色的城市环境。更多信息请参阅 Tae-Hee Kim、Jinsoo Kim 及合作者撰写的评论文章(DOI: 10.1002/celc.202400288)。封面设计:Cube3D Graphic。
Front Cover: Advancements in Dry Electrode Technologies: Towards Sustainable and Efficient Battery Manufacturing (ChemElectroChem 17/2024)
The front cover illustrates a comparison between the wet and dry electrode coating processes for Li-ion batteries. On the left side, the wet electrode coating process is depicted, requiring a lengthy drying process and generating toxic solvents. This is represented by a background of a heavily polluted city with smog and emissions. On the right side, the dry electrode coating process, which does not require drying or the use of solvents, is shown as eco-friendly. This is depicted by an electric vehicle equipped with batteries made using the dry process, maintaining a clean and green city environment. More information can be found in the Review Article by Tae-Hee Kim, Jinsoo Kim, and co-workers (DOI: 10.1002/celc.202400288). Cover design by Cube3D Graphic.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.