{"title":"揭示 ErFe0.5Co0.5O3 中涉及负磁化和交换偏置的复杂磁性行为","authors":"Deepak Garg, Amit Kumar, S. M. Yusuf","doi":"10.1103/physrevb.110.104401","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comprehensive investigation of the distinctive magnetic properties involving the remarkable occurrences of negative magnetization (NM), exchange bias (EB), and spin reorientation (SR) in the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>ErF</mi><msub><mi mathvariant=\"normal\">e</mi><mrow><mn>0.5</mn></mrow></msub><msub><mi mathvariant=\"normal\">Co</mi><mrow><mn>0.5</mn></mrow></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> compound. The dc magnetization data, recorded in field-cooled-cooling mode, reveal a net zero magnetization at the compensation temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>T</mi><mi>COMP</mi></msub><mo>)</mo></math> of 24 K, leading to the NM phenomenon in the compound. Rietveld refinement of the neutron diffraction (ND) patterns over 1.5–300 K elucidates the SR of Fe/Co spins at 100 K <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>T</mi><mi>SR</mi></msub><mo>)</mo></math> and Er magnetic ordering <4 K <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msubsup><mi>T</mi><mrow><mi mathvariant=\"normal\">N</mi></mrow><mi>Er</mi></msubsup><mo>)</mo></math> resulting in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>4</mn></msub><mo>(</mo><msub><mi>G</mi><mi>x</mi></msub><mo>)</mo></math>, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>24</mn></msub><mo>(</mo><mrow><msub><mi>G</mi><mi>z</mi></msub><mo>,</mo><msub><mi>G</mi><mi>x</mi></msub><mo>)</mo></mrow></math>, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>2</mn></msub><mo>(</mo><msub><mi>G</mi><mi>z</mi></msub><mo>)</mo></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>257</mn></msub><mo>(</mo><mrow><msub><mi>G</mi><mi>z</mi></msub><mo>;</mo><msubsup><mi>A</mi><mi>y</mi><mi>Er</mi></msubsup><msubsup><mi>G</mi><mi>z</mi><mi>Er</mi></msubsup><mo>)</mo></mrow></math> magnetic structures at <i>T</i> > <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>SR</mi></msub></math>, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>SR</mi></msub><mo>≥</mo><mi>T</mi><mo>></mo><msub><mi>T</mi><mi>COMP</mi></msub></mrow></math>, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msubsup><mi>T</mi><mrow><mi mathvariant=\"normal\">N</mi></mrow><mi>Er</mi></msubsup><mo><</mo><mi>T</mi><mo>≤</mo><msub><mi>T</mi><mi>COMP</mi></msub></mrow></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>T</mi><mspace width=\"0.16em\"></mspace><mo>≤</mo><mspace width=\"0.16em\"></mspace><msubsup><mi>T</mi><mrow><mi mathvariant=\"normal\">N</mi></mrow><mi>Er</mi></msubsup></mrow></math>, respectively. It is, therefore, evident that the SR of Fe/Co moments from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>4</mn></msub><mo>(</mo><msub><mi>G</mi><mi>x</mi></msub><mo>)</mo></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>2</mn></msub><mo>(</mo><msub><mi>G</mi><mi>z</mi></msub><mo>)</mo></math> gets completed at the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> of 24 K, and the Er magnetic ordering into an unusual <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Γ</mi><mn>57</mn></msub><mo>(</mo><mrow><msubsup><mi>A</mi><mi>y</mi><mi>Er</mi></msubsup><msubsup><mi>G</mi><mi>z</mi><mi>Er</mi></msubsup><mo>)</mo></mrow></math> spin configuration takes place at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>T</mi><mo>≤</mo><mn>4</mn></mrow></math> K. Anomalies in dc magnetization data (coercivity and remanent magnetization) at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>SR</mi></msub></math>, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>T</mi><mrow><mi mathvariant=\"normal\">N</mi></mrow><mi>Er</mi></msubsup></math> are also reflected in the ac susceptibility data. Intriguingly, EB field <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>(</mo><msub><mi>H</mi><mi>EB</mi></msub><mo>)</mo></math> in the compound does not change its polarity across <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> and remains positive even above <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math>. The observed positive <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>EB</mi></msub></math> at <i>T</i> > <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> can be attributed to a complex spin arrangement as evident from the ND, whereas for <i>T</i> ≤ <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math>, positive <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>EB</mi></msub></math> has its usual explanation within the framework of the Meiklejohn-Beam model. The maximum positive <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>EB</mi></msub></math> and a broad hump in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>EB</mi></msub></math> at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>SR</mi></msub></math>, respectively, indicate a correlation between the EB and SR in the compound. Additionally, cooling-field dependence of the EB shows a peak value ∼5 kOe; thereafter, an unusual suppression of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>EB</mi></msub></math> up to 70 kOe cooling field is found. The observed NM below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> is elucidated using the Cooke's model, where the polarized Er moment, under the internal magnetic field of the ordered canted antiferromagnetic Fe/Co sublattice, competes with the ferromagnetic Fe/Co moment. This results in a complete cancellation of magnetization at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> and the emergence of NM below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math> in the compound. The specific heat data reveal a Schottky anomaly, inferring the dominant polarized nature of the Er moment below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>COMP</mi></msub></math>. In this paper, we underscore the pivotal role of Er and Fe/Co exchange coupling in shaping the intriguing and complex magnetic properties—NM and EB—of the compound. These findings highlight the potential utility of the compound in spintronic applications.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling intricate magnetic behavior involving negative magnetization and exchange-bias in ErFe0.5Co0.5O3\",\"authors\":\"Deepak Garg, Amit Kumar, S. M. Yusuf\",\"doi\":\"10.1103/physrevb.110.104401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a comprehensive investigation of the distinctive magnetic properties involving the remarkable occurrences of negative magnetization (NM), exchange bias (EB), and spin reorientation (SR) in the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>ErF</mi><msub><mi mathvariant=\\\"normal\\\">e</mi><mrow><mn>0.5</mn></mrow></msub><msub><mi mathvariant=\\\"normal\\\">Co</mi><mrow><mn>0.5</mn></mrow></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> compound. The dc magnetization data, recorded in field-cooled-cooling mode, reveal a net zero magnetization at the compensation temperature <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>(</mo><msub><mi>T</mi><mi>COMP</mi></msub><mo>)</mo></math> of 24 K, leading to the NM phenomenon in the compound. Rietveld refinement of the neutron diffraction (ND) patterns over 1.5–300 K elucidates the SR of Fe/Co spins at 100 K <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>(</mo><msub><mi>T</mi><mi>SR</mi></msub><mo>)</mo></math> and Er magnetic ordering <4 K <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>(</mo><msubsup><mi>T</mi><mrow><mi mathvariant=\\\"normal\\\">N</mi></mrow><mi>Er</mi></msubsup><mo>)</mo></math> resulting in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>4</mn></msub><mo>(</mo><msub><mi>G</mi><mi>x</mi></msub><mo>)</mo></math>, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>24</mn></msub><mo>(</mo><mrow><msub><mi>G</mi><mi>z</mi></msub><mo>,</mo><msub><mi>G</mi><mi>x</mi></msub><mo>)</mo></mrow></math>, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>2</mn></msub><mo>(</mo><msub><mi>G</mi><mi>z</mi></msub><mo>)</mo></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>257</mn></msub><mo>(</mo><mrow><msub><mi>G</mi><mi>z</mi></msub><mo>;</mo><msubsup><mi>A</mi><mi>y</mi><mi>Er</mi></msubsup><msubsup><mi>G</mi><mi>z</mi><mi>Er</mi></msubsup><mo>)</mo></mrow></math> magnetic structures at <i>T</i> > <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>SR</mi></msub></math>, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>T</mi><mi>SR</mi></msub><mo>≥</mo><mi>T</mi><mo>></mo><msub><mi>T</mi><mi>COMP</mi></msub></mrow></math>, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msubsup><mi>T</mi><mrow><mi mathvariant=\\\"normal\\\">N</mi></mrow><mi>Er</mi></msubsup><mo><</mo><mi>T</mi><mo>≤</mo><msub><mi>T</mi><mi>COMP</mi></msub></mrow></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>T</mi><mspace width=\\\"0.16em\\\"></mspace><mo>≤</mo><mspace width=\\\"0.16em\\\"></mspace><msubsup><mi>T</mi><mrow><mi mathvariant=\\\"normal\\\">N</mi></mrow><mi>Er</mi></msubsup></mrow></math>, respectively. It is, therefore, evident that the SR of Fe/Co moments from <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>4</mn></msub><mo>(</mo><msub><mi>G</mi><mi>x</mi></msub><mo>)</mo></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>2</mn></msub><mo>(</mo><msub><mi>G</mi><mi>z</mi></msub><mo>)</mo></math> gets completed at the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> of 24 K, and the Er magnetic ordering into an unusual <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"normal\\\">Γ</mi><mn>57</mn></msub><mo>(</mo><mrow><msubsup><mi>A</mi><mi>y</mi><mi>Er</mi></msubsup><msubsup><mi>G</mi><mi>z</mi><mi>Er</mi></msubsup><mo>)</mo></mrow></math> spin configuration takes place at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>T</mi><mo>≤</mo><mn>4</mn></mrow></math> K. Anomalies in dc magnetization data (coercivity and remanent magnetization) at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>SR</mi></msub></math>, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>T</mi><mrow><mi mathvariant=\\\"normal\\\">N</mi></mrow><mi>Er</mi></msubsup></math> are also reflected in the ac susceptibility data. Intriguingly, EB field <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>(</mo><msub><mi>H</mi><mi>EB</mi></msub><mo>)</mo></math> in the compound does not change its polarity across <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> and remains positive even above <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math>. The observed positive <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>H</mi><mi>EB</mi></msub></math> at <i>T</i> > <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> can be attributed to a complex spin arrangement as evident from the ND, whereas for <i>T</i> ≤ <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math>, positive <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>H</mi><mi>EB</mi></msub></math> has its usual explanation within the framework of the Meiklejohn-Beam model. The maximum positive <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>H</mi><mi>EB</mi></msub></math> and a broad hump in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>H</mi><mi>EB</mi></msub></math> at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>SR</mi></msub></math>, respectively, indicate a correlation between the EB and SR in the compound. Additionally, cooling-field dependence of the EB shows a peak value ∼5 kOe; thereafter, an unusual suppression of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>H</mi><mi>EB</mi></msub></math> up to 70 kOe cooling field is found. The observed NM below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> is elucidated using the Cooke's model, where the polarized Er moment, under the internal magnetic field of the ordered canted antiferromagnetic Fe/Co sublattice, competes with the ferromagnetic Fe/Co moment. This results in a complete cancellation of magnetization at <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> and the emergence of NM below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math> in the compound. The specific heat data reveal a Schottky anomaly, inferring the dominant polarized nature of the Er moment below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>COMP</mi></msub></math>. In this paper, we underscore the pivotal role of Er and Fe/Co exchange coupling in shaping the intriguing and complex magnetic properties—NM and EB—of the compound. These findings highlight the potential utility of the compound in spintronic applications.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.104401\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.104401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
本文全面研究了 ErFe0.5Co0.5O3 复合物中显著出现的负磁化(NM)、交换偏置(EB)和自旋重新定向(SR)等独特磁性能。以场冷却-冷却模式记录的直流磁化数据显示,在 24 K 的补偿温度 (TCOMP) 下磁化率为零,从而导致了化合物中的负磁化现象。在 1.5-300 K 的中子衍射 (ND) 图样进行了里特维尔德细化,阐明了在 100 K (TSR) 和 Er 磁有序 <4 K (TNEr) 下铁/钴自旋的 SR,分别在 T >TSR、TSR≥T>TCOMP、TNEr<T≤TCOMP 和 T≤TNEr 时产生Γ4(Gx)、Γ24(Gz,Gx)、Γ2(Gz) 和Γ257(Gz;AyErGzEr) 磁结构。因此很明显,铁/钴矩从Γ4(Gx)到Γ2(Gz)的 SR 是在 24 K 的 TCOMP 时完成的,而 Er 磁有序变成不寻常的Γ57(AyErGzEr)自旋构型是在 T≤4 K 时发生的。有趣的是,化合物中的 EB 场(HEB)在整个 TCOMP 期间极性不变,甚至在 TCOMP 以上仍为正值。从 ND 可以看出,在 T > TCOMP 时观察到的正 HEB 可归因于复杂的自旋排列,而在 T ≤ TCOMP 时,正 HEB 通常可在 Meiklejohn-Beam 模型框架内得到解释。在 TCOMP 和 TSR 时,正 HEB 的最大值和 HEB 的宽驼峰分别表明了化合物中 EB 和 SR 之间的相关性。此外,EB 与冷却场的关系显示出一个峰值,即 5 kOe;此后,发现 HEB 在冷却场达到 70 kOe 时受到异常抑制。利用库克模型(Cooke's model)阐明了在 TCOMP 以下观察到的 NM,在该模型中,极化的 Er 磁矩在有序悬臂反铁磁性铁/钴亚晶格的内部磁场作用下,与铁磁性铁/钴磁矩竞争。这导致化合物在 TCOMP 时磁化完全消失,而在 TCOMP 以下出现 NM。比热数据显示了肖特基反常现象,从而推断出铒矩在 TCOMP 以下的主要极化性质。在本文中,我们强调了 Er 和铁/钴交换耦合在形成该化合物奇妙而复杂的磁性能(NM 和 EB)中的关键作用。这些发现凸显了该化合物在自旋电子应用中的潜在用途。
Unraveling intricate magnetic behavior involving negative magnetization and exchange-bias in ErFe0.5Co0.5O3
In this paper, we present a comprehensive investigation of the distinctive magnetic properties involving the remarkable occurrences of negative magnetization (NM), exchange bias (EB), and spin reorientation (SR) in the compound. The dc magnetization data, recorded in field-cooled-cooling mode, reveal a net zero magnetization at the compensation temperature of 24 K, leading to the NM phenomenon in the compound. Rietveld refinement of the neutron diffraction (ND) patterns over 1.5–300 K elucidates the SR of Fe/Co spins at 100 K and Er magnetic ordering <4 K resulting in , , , and magnetic structures at T > , , , and , respectively. It is, therefore, evident that the SR of Fe/Co moments from to gets completed at the of 24 K, and the Er magnetic ordering into an unusual spin configuration takes place at K. Anomalies in dc magnetization data (coercivity and remanent magnetization) at , , and are also reflected in the ac susceptibility data. Intriguingly, EB field in the compound does not change its polarity across and remains positive even above . The observed positive at T > can be attributed to a complex spin arrangement as evident from the ND, whereas for T ≤ , positive has its usual explanation within the framework of the Meiklejohn-Beam model. The maximum positive and a broad hump in at and , respectively, indicate a correlation between the EB and SR in the compound. Additionally, cooling-field dependence of the EB shows a peak value ∼5 kOe; thereafter, an unusual suppression of up to 70 kOe cooling field is found. The observed NM below is elucidated using the Cooke's model, where the polarized Er moment, under the internal magnetic field of the ordered canted antiferromagnetic Fe/Co sublattice, competes with the ferromagnetic Fe/Co moment. This results in a complete cancellation of magnetization at and the emergence of NM below in the compound. The specific heat data reveal a Schottky anomaly, inferring the dominant polarized nature of the Er moment below . In this paper, we underscore the pivotal role of Er and Fe/Co exchange coupling in shaping the intriguing and complex magnetic properties—NM and EB—of the compound. These findings highlight the potential utility of the compound in spintronic applications.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter