Jakob Stegmann, Alejandro Vigna-Gómez, Antti Rantala, Tom Wagg, Lorenz Zwick, Mathieu Renzo, Lieke A. C. van Son, Selma E. de Mink and Simon D. M. White
{"title":"银河系潮汐诱发的宽双星近距离相遇:对恒星合并和引力波源的影响","authors":"Jakob Stegmann, Alejandro Vigna-Gómez, Antti Rantala, Tom Wagg, Lorenz Zwick, Mathieu Renzo, Lieke A. C. van Son, Selma E. de Mink and Simon D. M. White","doi":"10.3847/2041-8213/ad70bb","DOIUrl":null,"url":null,"abstract":"A substantial fraction of stars can be found in wide binaries with projected separations between ∼102 and 105 au. In the standard lore of binary physics, these would evolve as effectively single stars that remotely orbit one another on stationary Keplerian ellipses. However, embedded in their Galactic environment, the low binding energy of wide binaries makes them exceptionally prone to perturbations from the gravitational potential of the Milky Way and encounters with passing stars. Employing a fully relativistic N-body integration scheme, we study the impact of these perturbations on the orbital evolution of wide binaries along their trajectory through the Milky Way. Our analysis reveals that the torques exerted by the Galaxy can cause large-amplitude oscillations of the binary eccentricity to 1 − e ≲ 10−8. As a consequence, the wide binary members pass close to each other at periapsis, which, depending on the type of binary, potentially leads to a mass transfer or collision of stars or to an inspiral and subsequent merger of compact remnants due to gravitational-wave radiation. Based on a simulation of 105 wide binaries across the Galactic field, we find that this mechanism could significantly contribute to the rate of stellar collisions and binary black hole mergers as inferred from observations of luminous red novae and gravitational-wave events by LIGO/Virgo/Kagra. We conclude that the dynamics of wide binaries, despite their large mean separation, can give rise to extreme interactions between stars and compact remnants.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Close Encounters of Wide Binaries Induced by the Galactic Tide: Implications for Stellar Mergers and Gravitational-wave Sources\",\"authors\":\"Jakob Stegmann, Alejandro Vigna-Gómez, Antti Rantala, Tom Wagg, Lorenz Zwick, Mathieu Renzo, Lieke A. C. van Son, Selma E. de Mink and Simon D. M. White\",\"doi\":\"10.3847/2041-8213/ad70bb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A substantial fraction of stars can be found in wide binaries with projected separations between ∼102 and 105 au. In the standard lore of binary physics, these would evolve as effectively single stars that remotely orbit one another on stationary Keplerian ellipses. However, embedded in their Galactic environment, the low binding energy of wide binaries makes them exceptionally prone to perturbations from the gravitational potential of the Milky Way and encounters with passing stars. Employing a fully relativistic N-body integration scheme, we study the impact of these perturbations on the orbital evolution of wide binaries along their trajectory through the Milky Way. Our analysis reveals that the torques exerted by the Galaxy can cause large-amplitude oscillations of the binary eccentricity to 1 − e ≲ 10−8. As a consequence, the wide binary members pass close to each other at periapsis, which, depending on the type of binary, potentially leads to a mass transfer or collision of stars or to an inspiral and subsequent merger of compact remnants due to gravitational-wave radiation. Based on a simulation of 105 wide binaries across the Galactic field, we find that this mechanism could significantly contribute to the rate of stellar collisions and binary black hole mergers as inferred from observations of luminous red novae and gravitational-wave events by LIGO/Virgo/Kagra. We conclude that the dynamics of wide binaries, despite their large mean separation, can give rise to extreme interactions between stars and compact remnants.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad70bb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad70bb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
有相当一部分恒星是宽双星,它们的投影距离在 ∼102 和 105 au 之间。按照标准的双星物理学理论,这些恒星实际上是作为单星在静止的开普勒椭圆上远程绕彼此运行而演化的。然而,由于嵌入银河环境,宽双星的低结合能使它们特别容易受到银河引力势能的扰动,并与经过的恒星相遇。我们采用完全相对论 N 体积分方案,研究了这些扰动对宽双星沿银河轨道演化的影响。我们的分析表明,银河系施加的力矩会导致双星偏心率在1 - e ≲ 10-8的范围内发生大振幅振荡。因此,宽双星成员在周距处相互靠近,根据双星的类型,这有可能导致质量转移或恒星碰撞,或者由于引力波辐射导致吸气和随后的紧凑残余合并。基于对银河系领域内 105 个宽双星的模拟,我们发现这一机制可以极大地促进恒星碰撞和双黑洞合并的速率,这一点可以从 LIGO/Virgo/Kagra 的红新星和引力波事件观测中推断出来。我们的结论是,尽管宽双星的平均距离很大,但它们的动力学会引起恒星和紧凑残余物之间的极端相互作用。
Close Encounters of Wide Binaries Induced by the Galactic Tide: Implications for Stellar Mergers and Gravitational-wave Sources
A substantial fraction of stars can be found in wide binaries with projected separations between ∼102 and 105 au. In the standard lore of binary physics, these would evolve as effectively single stars that remotely orbit one another on stationary Keplerian ellipses. However, embedded in their Galactic environment, the low binding energy of wide binaries makes them exceptionally prone to perturbations from the gravitational potential of the Milky Way and encounters with passing stars. Employing a fully relativistic N-body integration scheme, we study the impact of these perturbations on the orbital evolution of wide binaries along their trajectory through the Milky Way. Our analysis reveals that the torques exerted by the Galaxy can cause large-amplitude oscillations of the binary eccentricity to 1 − e ≲ 10−8. As a consequence, the wide binary members pass close to each other at periapsis, which, depending on the type of binary, potentially leads to a mass transfer or collision of stars or to an inspiral and subsequent merger of compact remnants due to gravitational-wave radiation. Based on a simulation of 105 wide binaries across the Galactic field, we find that this mechanism could significantly contribute to the rate of stellar collisions and binary black hole mergers as inferred from observations of luminous red novae and gravitational-wave events by LIGO/Virgo/Kagra. We conclude that the dynamics of wide binaries, despite their large mean separation, can give rise to extreme interactions between stars and compact remnants.