{"title":"室温下利用 PLD 生长的成分依赖性自掺杂 Cs2SnI6 薄膜中的掺杂补偿","authors":"Yansu Shan, Qingyang Zhang, Haoming Wei, Shiyu Mao, Luping Zhu, Xiaofan Liu, Xia Wang, Bingqiang Cao","doi":"10.1016/j.jmst.2024.08.011","DOIUrl":null,"url":null,"abstract":"<p>Tetravalent tin (Sn<sup>4+</sup>)-based inorganic perovskite semiconductors like Cs<sub>2</sub>SnI<sub>6</sub> are expected to replace lead-based perovskite counterparts due to advantages such as structural stability and environmental friendliness. In this paper, we reported the dopant compensation effect in the component-dependent self-doped (111)-oriented Cs<sub>2</sub>SnI<sub>6</sub> thin films grown with pulsed laser deposition (PLD) at room temperature. The films were grown on (100)-SrTiO<sub>3</sub> (STO) substrates at room temperature by PLD. Hall results of the Cs<sub>2</sub>SnI<sub>6</sub> films with different components realizing by controlling the ratio of SnI<sub>4</sub>/CsI in the targets demonstrate a clear change of conductivity type from N-type to P-type, while the carrier concentration decreases from 10<sup>18</sup> to 10<sup>13</sup> and accordingly the film resistivity increases significantly from 3.8 to 2506 Ω cm. The defect-related optical fingerprints of Cs<sub>2</sub>SnI<sub>6</sub> films were also investigated with temperature-dependent photoluminescence spectroscopy. At low temperatures of 10 K, the Cs<sub>2</sub>SnI<sub>6</sub> films exhibit donor-bound (D<sup>0</sup>X) and donor-acceptor pair (DAP) emission, respectively, due to the self-doping effect. These results indicate that controlling the composition of the PLD target is a powerful way to tune the electrical properties of Cs<sub>2</sub>SnI<sub>6</sub> films for possible applications in solar cells or X-ray detectors.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopant compensation in component-dependent self-doped Cs2SnI6 thin films grown with PLD at room temperature\",\"authors\":\"Yansu Shan, Qingyang Zhang, Haoming Wei, Shiyu Mao, Luping Zhu, Xiaofan Liu, Xia Wang, Bingqiang Cao\",\"doi\":\"10.1016/j.jmst.2024.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tetravalent tin (Sn<sup>4+</sup>)-based inorganic perovskite semiconductors like Cs<sub>2</sub>SnI<sub>6</sub> are expected to replace lead-based perovskite counterparts due to advantages such as structural stability and environmental friendliness. In this paper, we reported the dopant compensation effect in the component-dependent self-doped (111)-oriented Cs<sub>2</sub>SnI<sub>6</sub> thin films grown with pulsed laser deposition (PLD) at room temperature. The films were grown on (100)-SrTiO<sub>3</sub> (STO) substrates at room temperature by PLD. Hall results of the Cs<sub>2</sub>SnI<sub>6</sub> films with different components realizing by controlling the ratio of SnI<sub>4</sub>/CsI in the targets demonstrate a clear change of conductivity type from N-type to P-type, while the carrier concentration decreases from 10<sup>18</sup> to 10<sup>13</sup> and accordingly the film resistivity increases significantly from 3.8 to 2506 Ω cm. The defect-related optical fingerprints of Cs<sub>2</sub>SnI<sub>6</sub> films were also investigated with temperature-dependent photoluminescence spectroscopy. At low temperatures of 10 K, the Cs<sub>2</sub>SnI<sub>6</sub> films exhibit donor-bound (D<sup>0</sup>X) and donor-acceptor pair (DAP) emission, respectively, due to the self-doping effect. These results indicate that controlling the composition of the PLD target is a powerful way to tune the electrical properties of Cs<sub>2</sub>SnI<sub>6</sub> films for possible applications in solar cells or X-ray detectors.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.011\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
四价锡(Sn4+)基无机包晶半导体(如 Cs2SnI6)具有结构稳定和环境友好等优点,有望取代铅基包晶半导体。在本文中,我们报告了在室温下利用脉冲激光沉积(PLD)技术生长的自掺杂(111)取向 Cs2SnI6 薄膜中的掺杂补偿效应。这些薄膜在室温下通过 PLD 生长在 (100)-SrTiO3 (STO) 衬底上。通过控制靶材中 SnI4/CsI 的比例实现不同成分的 Cs2SnI6 薄膜的霍尔结果表明,导电类型从 N 型明显转变为 P 型,载流子浓度从 1018 降至 1013,因此薄膜电阻率从 3.8 Ω cm 显著增至 2506 Ω cm。我们还利用随温度变化的光致发光光谱研究了 Cs2SnI6 薄膜与缺陷有关的光学指纹。在 10 K 的低温下,由于自掺杂效应,Cs2SnI6 薄膜分别显示出供体结合(D0X)和供体-受体对(DAP)发射。这些结果表明,控制 PLD 靶材的成分是调整 Cs2SnI6 薄膜电学特性的有效方法,可用于太阳能电池或 X 射线探测器。
Dopant compensation in component-dependent self-doped Cs2SnI6 thin films grown with PLD at room temperature
Tetravalent tin (Sn4+)-based inorganic perovskite semiconductors like Cs2SnI6 are expected to replace lead-based perovskite counterparts due to advantages such as structural stability and environmental friendliness. In this paper, we reported the dopant compensation effect in the component-dependent self-doped (111)-oriented Cs2SnI6 thin films grown with pulsed laser deposition (PLD) at room temperature. The films were grown on (100)-SrTiO3 (STO) substrates at room temperature by PLD. Hall results of the Cs2SnI6 films with different components realizing by controlling the ratio of SnI4/CsI in the targets demonstrate a clear change of conductivity type from N-type to P-type, while the carrier concentration decreases from 1018 to 1013 and accordingly the film resistivity increases significantly from 3.8 to 2506 Ω cm. The defect-related optical fingerprints of Cs2SnI6 films were also investigated with temperature-dependent photoluminescence spectroscopy. At low temperatures of 10 K, the Cs2SnI6 films exhibit donor-bound (D0X) and donor-acceptor pair (DAP) emission, respectively, due to the self-doping effect. These results indicate that controlling the composition of the PLD target is a powerful way to tune the electrical properties of Cs2SnI6 films for possible applications in solar cells or X-ray detectors.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.