Alessia Foglia, Lucia Pittura, Veronica Vivani, Massimiliano Sgroi, Lucia De Simoni, Anna Laura Eusebi, Stefania Gorbi, Francesco Regoli, Francesco Fatone
{"title":"城市水循环中的微塑料:在废水和饮用水处理厂中寻找更科学的取样和表征方法。","authors":"Alessia Foglia, Lucia Pittura, Veronica Vivani, Massimiliano Sgroi, Lucia De Simoni, Anna Laura Eusebi, Stefania Gorbi, Francesco Regoli, Francesco Fatone","doi":"10.1016/j.scitotenv.2024.175919","DOIUrl":null,"url":null,"abstract":"<p><p>Specific campaigns to detect microplastics (MPs) in the urban water cycle were carried out in three drinking water plants and two wastewater treatment plants. A self-designed sampler for MPs detection in water matrices was in this study preliminary validated and then tested in long term campaigns sampling up to 1000 L. Raw drinking water and wastewater show microplastics (MPs) concentrations of 2-11 and of 480-801 MPs/m<sup>3</sup>, respectively, and MPs removals of 47-78 % and of 84-98 %, correspondingly. Specific roles of chemical and physical conventional processes in microplastics removals were investigated. Solid-liquid separation, flotation and filtration are the main processes for achieving high microplastics removal. Regarding concentrated matrices, MPs concentrations in sludge samples varied in the range of 5000-500,000 MPs/m<sup>3</sup>. Finally, shapes, size classes and polymers' typologies were investigated in the extracted MPs. The detected sizes are mainly 0.5-0.1 mm in drinking waters while 5-1 mm in wastewaters. Wastewaters were predominated by synthetic fibers (polyester type), while drinking waters were mainly characterized by fragments and the fibers were mostly of natural origin. Finally, the results of this study supported best practices and guidelines for a representative assessment of MPs in water (sampling methods, extraction procedures, characterization and quantification).</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microplastics in urban water cycles: Looking for a more scientific approach for sampling and characterization in wastewater and drinking water treatment plants.\",\"authors\":\"Alessia Foglia, Lucia Pittura, Veronica Vivani, Massimiliano Sgroi, Lucia De Simoni, Anna Laura Eusebi, Stefania Gorbi, Francesco Regoli, Francesco Fatone\",\"doi\":\"10.1016/j.scitotenv.2024.175919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specific campaigns to detect microplastics (MPs) in the urban water cycle were carried out in three drinking water plants and two wastewater treatment plants. A self-designed sampler for MPs detection in water matrices was in this study preliminary validated and then tested in long term campaigns sampling up to 1000 L. Raw drinking water and wastewater show microplastics (MPs) concentrations of 2-11 and of 480-801 MPs/m<sup>3</sup>, respectively, and MPs removals of 47-78 % and of 84-98 %, correspondingly. Specific roles of chemical and physical conventional processes in microplastics removals were investigated. Solid-liquid separation, flotation and filtration are the main processes for achieving high microplastics removal. Regarding concentrated matrices, MPs concentrations in sludge samples varied in the range of 5000-500,000 MPs/m<sup>3</sup>. Finally, shapes, size classes and polymers' typologies were investigated in the extracted MPs. The detected sizes are mainly 0.5-0.1 mm in drinking waters while 5-1 mm in wastewaters. Wastewaters were predominated by synthetic fibers (polyester type), while drinking waters were mainly characterized by fragments and the fibers were mostly of natural origin. Finally, the results of this study supported best practices and guidelines for a representative assessment of MPs in water (sampling methods, extraction procedures, characterization and quantification).</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175919\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175919","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microplastics in urban water cycles: Looking for a more scientific approach for sampling and characterization in wastewater and drinking water treatment plants.
Specific campaigns to detect microplastics (MPs) in the urban water cycle were carried out in three drinking water plants and two wastewater treatment plants. A self-designed sampler for MPs detection in water matrices was in this study preliminary validated and then tested in long term campaigns sampling up to 1000 L. Raw drinking water and wastewater show microplastics (MPs) concentrations of 2-11 and of 480-801 MPs/m3, respectively, and MPs removals of 47-78 % and of 84-98 %, correspondingly. Specific roles of chemical and physical conventional processes in microplastics removals were investigated. Solid-liquid separation, flotation and filtration are the main processes for achieving high microplastics removal. Regarding concentrated matrices, MPs concentrations in sludge samples varied in the range of 5000-500,000 MPs/m3. Finally, shapes, size classes and polymers' typologies were investigated in the extracted MPs. The detected sizes are mainly 0.5-0.1 mm in drinking waters while 5-1 mm in wastewaters. Wastewaters were predominated by synthetic fibers (polyester type), while drinking waters were mainly characterized by fragments and the fibers were mostly of natural origin. Finally, the results of this study supported best practices and guidelines for a representative assessment of MPs in water (sampling methods, extraction procedures, characterization and quantification).
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.