胱硫醚 γ 裂解酶通过 Foxm1-Gas1 通路减缓血管平滑肌细胞衰老,从而调节动脉僵化

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants & redox signaling Pub Date : 2024-09-30 DOI:10.1089/ars.2024.0602
Qian Lin, Changting Cui, Ying Zhao, Yuefeng Geng, Huimin Gao, Xiaodie Shao, Ling Cheng, Haitao Li, Bin Geng
{"title":"胱硫醚 γ 裂解酶通过 Foxm1-Gas1 通路减缓血管平滑肌细胞衰老,从而调节动脉僵化","authors":"Qian Lin, Changting Cui, Ying Zhao, Yuefeng Geng, Huimin Gao, Xiaodie Shao, Ling Cheng, Haitao Li, Bin Geng","doi":"10.1089/ars.2024.0602","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H<sub>2</sub>S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. <b><i>Methods & Results:</i></b> First, we observed a downregulation of CSE/H<sub>2</sub>S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness <i>in vivo</i> and VSMC senescence and stiffness <i>in vitro</i>. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H<sub>2</sub>S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H<sub>2</sub>S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H<sub>2</sub>S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. <b><i>Innovation:</i></b> Our findings highlight the protective role of CSE/H<sub>2</sub>S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. <b><i>Conclusion:</i></b> Endogenous CSE/H<sub>2</sub>S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cystathionine γ-Lyase Attenuates Vascular Smooth Muscle Cell Senescence via Foxm1-Gas1 Pathway to Mediate Arterial Stiffness.\",\"authors\":\"Qian Lin, Changting Cui, Ying Zhao, Yuefeng Geng, Huimin Gao, Xiaodie Shao, Ling Cheng, Haitao Li, Bin Geng\",\"doi\":\"10.1089/ars.2024.0602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H<sub>2</sub>S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. <b><i>Methods & Results:</i></b> First, we observed a downregulation of CSE/H<sub>2</sub>S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness <i>in vivo</i> and VSMC senescence and stiffness <i>in vitro</i>. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H<sub>2</sub>S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H<sub>2</sub>S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H<sub>2</sub>S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. <b><i>Innovation:</i></b> Our findings highlight the protective role of CSE/H<sub>2</sub>S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. <b><i>Conclusion:</i></b> Endogenous CSE/H<sub>2</sub>S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2024.0602\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0602","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的 动脉僵化是血管老化的标志,是导致高血压和器官灌注受损的重要原因。血管平滑肌细胞(VSMC)功能障碍,尤其是血管平滑肌细胞衰老及其与动脉僵化的相互作用,在动脉僵化的发病机制中至关重要。虽然硫化氢(H2S)及其关键酶胱硫醚γ-赖氨酸酶(CSE)在心血管疾病中的作用众所周知,但它们对动脉僵化的影响却不甚了解。方法与结果 首先,我们观察到在生物衰老和血管紧张素 II(AngII)诱导的衰老过程中,主动脉介质中的 CSE/H2S 下调。通过loxp-cre(Tagln-cre)系统建立的VSMC特异性CSE基因敲除小鼠,加剧了AngII诱导的体内主动脉衰老和僵化以及体外VSMC衰老和僵化。相反,CSE 激动剂 norswertianolin 可减轻这些影响。siRNA 敲除 Foxm1 增加了 Gas1 的转录,降低了 H2S 对 VSMC 衰老和僵化的保护作用。最后,我们证明了 CSE/H2S 可在 C210 位点巯基化 Foxm1,调节其核转位和活性,从而减少 VSMC 的衰老和僵化。创新 我们的研究结果突出了 CSE/H2S 在动脉僵化中的保护作用,强调了 CSE、Gas1 和 Foxm1 对 VSMC 衰老和僵化的新贡献。结论 VSMC 中的内源性 CSE/H2S 可减少 VSMC 的衰老和僵化,从而减轻动脉僵化和老化,部分原因是硫酸化介导的 Foxm1 激活和随后的 Gas1 信号通路抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cystathionine γ-Lyase Attenuates Vascular Smooth Muscle Cell Senescence via Foxm1-Gas1 Pathway to Mediate Arterial Stiffness.

Aims: Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H2S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. Methods & Results: First, we observed a downregulation of CSE/H2S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness in vivo and VSMC senescence and stiffness in vitro. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H2S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H2S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H2S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. Innovation: Our findings highlight the protective role of CSE/H2S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. Conclusion: Endogenous CSE/H2S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
期刊最新文献
Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1