Kazuki Ishikawa, Chihiro Yamamura, Koji Miyamoto, Yasukazu Kanda, Haruhiko Inoue, Kazunori Okada, Takashi Kamakura, Masaki Mori
{"title":"水稻转录因子 DPF 调控胁迫诱导的二萜植物毒素的生物合成","authors":"Kazuki Ishikawa, Chihiro Yamamura, Koji Miyamoto, Yasukazu Kanda, Haruhiko Inoue, Kazunori Okada, Takashi Kamakura, Masaki Mori","doi":"10.1093/bbb/zbae118","DOIUrl":null,"url":null,"abstract":"<p><p>Diterpenoid Phytoalexin Factor (DPF) is a key transcription factor involved in diterpenoid phytoalexin (DP) biosynthesis under non-stressed conditions in rice (Oryza sativa L.). Using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9, DPF knockout rice lines were generated. Treatments with abiotic stresses (copper chloride, ultraviolet light, and jasmonic acid) and biotic stress (blast fungus infection) to the knockout lines revealed that the DPF positively regulates stress-induced DP biosynthesis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rice transcription factor DPF regulates stress-induced biosynthesis of diterpenoid phytoalexins.\",\"authors\":\"Kazuki Ishikawa, Chihiro Yamamura, Koji Miyamoto, Yasukazu Kanda, Haruhiko Inoue, Kazunori Okada, Takashi Kamakura, Masaki Mori\",\"doi\":\"10.1093/bbb/zbae118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diterpenoid Phytoalexin Factor (DPF) is a key transcription factor involved in diterpenoid phytoalexin (DP) biosynthesis under non-stressed conditions in rice (Oryza sativa L.). Using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9, DPF knockout rice lines were generated. Treatments with abiotic stresses (copper chloride, ultraviolet light, and jasmonic acid) and biotic stress (blast fungus infection) to the knockout lines revealed that the DPF positively regulates stress-induced DP biosynthesis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae118\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae118","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rice transcription factor DPF regulates stress-induced biosynthesis of diterpenoid phytoalexins.
Diterpenoid Phytoalexin Factor (DPF) is a key transcription factor involved in diterpenoid phytoalexin (DP) biosynthesis under non-stressed conditions in rice (Oryza sativa L.). Using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9, DPF knockout rice lines were generated. Treatments with abiotic stresses (copper chloride, ultraviolet light, and jasmonic acid) and biotic stress (blast fungus infection) to the knockout lines revealed that the DPF positively regulates stress-induced DP biosynthesis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.