{"title":"用于机械触觉反馈的多腔流体触觉反馈系统的设计与特性分析","authors":"Ge Shi, Jialei Shi, Azadeh Shariati, Kamyar Motaghedolhagh, Shervanthi Homer-Vanniasinkam, Helge Wurdemann","doi":"10.1109/TOH.2024.3454179","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have indicated that the use of a closed-loop haptic feedback system, which offers various mechano-tactile stimuli patterns with different actuation methods, can improve the performance and grasp control of prosthetic hands. Purely mechanical-driven feedback approaches for various mechano-tactile stimuli patterns, however, have not been explored. In this paper, a multi-cavity fluidic haptic feedback system is introduced with details of design, fabrication, and validation. The multi-cavity haptic feedback system can detect the physical touch with direction at the fingertip sensor. The direction of the force is reflected in the form of pressure deviation in the multi-cavity fingertip sensor. The feedback actuator generates various mechano-tactile stimuli patterns according to the pressure deviation from the fingertip sensor. Hence, users can identify the force with direction according to the stimuli patterns. The haptic feedback system is validated through two experiments. The initial experiment characterises the system and establishes the relationship between the fingertip sensor and feedback actuator. The subsequent experiment, a human interaction test, confirms the system's capability to detect force with directions and generate corresponding tactile stimuli in the feedback actuator. The outcomes corroborate the idea that participants are generally capable of discerning changes in angle.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Characterisation of Multi-cavity, Fluidic Haptic Feedback System for Mechano-tactile Feedback.\",\"authors\":\"Ge Shi, Jialei Shi, Azadeh Shariati, Kamyar Motaghedolhagh, Shervanthi Homer-Vanniasinkam, Helge Wurdemann\",\"doi\":\"10.1109/TOH.2024.3454179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies have indicated that the use of a closed-loop haptic feedback system, which offers various mechano-tactile stimuli patterns with different actuation methods, can improve the performance and grasp control of prosthetic hands. Purely mechanical-driven feedback approaches for various mechano-tactile stimuli patterns, however, have not been explored. In this paper, a multi-cavity fluidic haptic feedback system is introduced with details of design, fabrication, and validation. The multi-cavity haptic feedback system can detect the physical touch with direction at the fingertip sensor. The direction of the force is reflected in the form of pressure deviation in the multi-cavity fingertip sensor. The feedback actuator generates various mechano-tactile stimuli patterns according to the pressure deviation from the fingertip sensor. Hence, users can identify the force with direction according to the stimuli patterns. The haptic feedback system is validated through two experiments. The initial experiment characterises the system and establishes the relationship between the fingertip sensor and feedback actuator. The subsequent experiment, a human interaction test, confirms the system's capability to detect force with directions and generate corresponding tactile stimuli in the feedback actuator. The outcomes corroborate the idea that participants are generally capable of discerning changes in angle.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2024.3454179\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3454179","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Design and Characterisation of Multi-cavity, Fluidic Haptic Feedback System for Mechano-tactile Feedback.
Numerous studies have indicated that the use of a closed-loop haptic feedback system, which offers various mechano-tactile stimuli patterns with different actuation methods, can improve the performance and grasp control of prosthetic hands. Purely mechanical-driven feedback approaches for various mechano-tactile stimuli patterns, however, have not been explored. In this paper, a multi-cavity fluidic haptic feedback system is introduced with details of design, fabrication, and validation. The multi-cavity haptic feedback system can detect the physical touch with direction at the fingertip sensor. The direction of the force is reflected in the form of pressure deviation in the multi-cavity fingertip sensor. The feedback actuator generates various mechano-tactile stimuli patterns according to the pressure deviation from the fingertip sensor. Hence, users can identify the force with direction according to the stimuli patterns. The haptic feedback system is validated through two experiments. The initial experiment characterises the system and establishes the relationship between the fingertip sensor and feedback actuator. The subsequent experiment, a human interaction test, confirms the system's capability to detect force with directions and generate corresponding tactile stimuli in the feedback actuator. The outcomes corroborate the idea that participants are generally capable of discerning changes in angle.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.