Hua Chai, Weizhen Deng, Junyu Wei, Ting Guan, Minfan He, Yong Liang, Le Li
{"title":"基于对比学习的深度神经网络,通过整合多种光学数据进行癌症亚型分析","authors":"Hua Chai, Weizhen Deng, Junyu Wei, Ting Guan, Minfan He, Yong Liang, Le Li","doi":"10.1007/s12539-024-00641-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering.</p><p><strong>Results: </strong>By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review.</p><p><strong>Conclusions: </strong>Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"966-975"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.\",\"authors\":\"Hua Chai, Weizhen Deng, Junyu Wei, Ting Guan, Minfan He, Yong Liang, Le Li\",\"doi\":\"10.1007/s12539-024-00641-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering.</p><p><strong>Results: </strong>By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review.</p><p><strong>Conclusions: </strong>Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"966-975\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00641-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00641-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.
Background: Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into tumor molecular subtyping. However, the high dimensionality and small sample size of the data may result in ambiguous and overlapping cancer subtypes during clustering. In this study, we propose a novel contrastive-learning-based approach to address this issue. The proposed end-to-end deep learning method can extract crucial information from the multi-omics features by self-supervised learning for patient clustering.
Results: By applying our method to nine public cancer datasets, we have demonstrated superior performance compared to existing methods in separating patients with different survival outcomes (p < 0.05). To further evaluate the impact of various omics data on cancer survival, we developed an XGBoost classification model and found that mRNA had the highest importance score, followed by DNA methylation and miRNA. In the presented case study, our method successfully clustered subtypes and identified 14 cancer-related genes, of which 12 (85.7%) were validated through literature review.
Conclusions: Our findings demonstrate that our method is capable of identifying cancer subtypes that are both statistically and biologically significant. The code about COLCS is given at: https://github.com/Mercuriiio/COLCS .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.