{"title":"毛里塔尼亚一个非综合征听力障碍家族中的 PJVK 基因裂解变异体。","authors":"Malak Salame, Crystel Bonnet, Amrit Singh-Estivalet, Selma Mohamed Brahim, Solene Roux, Ely Cheikh Boussaty, Mouna Hadrami, Cheikh Tijani Hamed, Abdellahi M'hamed Sidi, Fatimetou Veten, Christine Petit, Ahmed Houmeida","doi":"10.1007/s13353-024-00903-x","DOIUrl":null,"url":null,"abstract":"<p><p>PJVK gene was recently shown to create hypervulnerability to sound in humans and was the first human gene implicated in non-syndromic hearing impairment due to neural defect. Targeted next-generation sequencing of over 150 known deafness genes was performed in the proband. Sanger sequencing was used to validate the PJVK variant and confirm familial segregation of the disease. A minigene-based assay has been performed to assess the impact of the variant on splicing. We identified a novel c.550-6A > G acceptor splice-site variant in the PJVK gene in the homozygous state in a Mauritanian child with severe to profound congenital deafness. The substitution was located in intron 4. The effect of the variation was demonstrated by a minigene assay which showed that the variation, an insertion of an additional 5 bp, created a new splice site resulting in the appearance of a premature stop codon (p.Phe184Tyrfs*26) and likely a truncated protein. This result constitutes a new splice-site variant report in the PJVK gene leading to DFNB59 type associated with autosomal recessive non-syndromic hearing impairment (ARNSHI).</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splice-altering variant of PJVK gene in a Mauritanian family with non-syndromic hearing impairment.\",\"authors\":\"Malak Salame, Crystel Bonnet, Amrit Singh-Estivalet, Selma Mohamed Brahim, Solene Roux, Ely Cheikh Boussaty, Mouna Hadrami, Cheikh Tijani Hamed, Abdellahi M'hamed Sidi, Fatimetou Veten, Christine Petit, Ahmed Houmeida\",\"doi\":\"10.1007/s13353-024-00903-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PJVK gene was recently shown to create hypervulnerability to sound in humans and was the first human gene implicated in non-syndromic hearing impairment due to neural defect. Targeted next-generation sequencing of over 150 known deafness genes was performed in the proband. Sanger sequencing was used to validate the PJVK variant and confirm familial segregation of the disease. A minigene-based assay has been performed to assess the impact of the variant on splicing. We identified a novel c.550-6A > G acceptor splice-site variant in the PJVK gene in the homozygous state in a Mauritanian child with severe to profound congenital deafness. The substitution was located in intron 4. The effect of the variation was demonstrated by a minigene assay which showed that the variation, an insertion of an additional 5 bp, created a new splice site resulting in the appearance of a premature stop codon (p.Phe184Tyrfs*26) and likely a truncated protein. This result constitutes a new splice-site variant report in the PJVK gene leading to DFNB59 type associated with autosomal recessive non-syndromic hearing impairment (ARNSHI).</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-024-00903-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00903-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Splice-altering variant of PJVK gene in a Mauritanian family with non-syndromic hearing impairment.
PJVK gene was recently shown to create hypervulnerability to sound in humans and was the first human gene implicated in non-syndromic hearing impairment due to neural defect. Targeted next-generation sequencing of over 150 known deafness genes was performed in the proband. Sanger sequencing was used to validate the PJVK variant and confirm familial segregation of the disease. A minigene-based assay has been performed to assess the impact of the variant on splicing. We identified a novel c.550-6A > G acceptor splice-site variant in the PJVK gene in the homozygous state in a Mauritanian child with severe to profound congenital deafness. The substitution was located in intron 4. The effect of the variation was demonstrated by a minigene assay which showed that the variation, an insertion of an additional 5 bp, created a new splice site resulting in the appearance of a premature stop codon (p.Phe184Tyrfs*26) and likely a truncated protein. This result constitutes a new splice-site variant report in the PJVK gene leading to DFNB59 type associated with autosomal recessive non-syndromic hearing impairment (ARNSHI).
期刊介绍:
The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.