Nguyen Nhat Thu Le, Jianfeng Wu, Alexander H Rickard, Chuanwu Xi
{"title":"评估以有机硅为基础的消毒剂配方对表面细菌污染所提供的长期保护。","authors":"Nguyen Nhat Thu Le, Jianfeng Wu, Alexander H Rickard, Chuanwu Xi","doi":"10.1093/jambio/lxae210","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The aim of this work was to evaluate the efficacy of an organosilicon-based, commercially available antimicrobial formulation in the My-shield® product line against bacterial surface contamination.</p><p><strong>Methods and results: </strong>The antimicrobial product was tested in vitro for its long-term persistence on surfaces and effectiveness against Staphylococcus aureus biofilms in comparison to 70% ethanol and 0.1% or 0.6% sodium hypochlorite. Field testing was also conducted over 6 weeks at a university athletic facility. In vitro studies demonstrated the log reductions achieved by the test product, 70% ethanol, and 0.1% sodium hypochlorite were 3.6, 3.1, and 3.2, respectively. The test product persisted on surfaces after washing and scrubbing, and pre-treatment with this product prevented S. aureus surface colonization for up to 30 days. In comparison, pre-treatment with 70% ethanol or 0.6% sodium hypochlorite was not protective against S. aureus biofilm formation after seven days. The field test demonstrated that weekly applications of the test product were more effective at reducing surface bacterial load than daily applications of a control product.</p><p><strong>Conclusions: </strong>The test product conferred greater long-term protection against bacterial growth and biofilm formation by S. aureus than ethanol and sodium hypochlorite. Even with less frequent applications, the test product maintained a high level of antimicrobial activity.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the long-term protection conferred by an organosilicon-based disinfectant formulation against bacterial contamination of surfaces.\",\"authors\":\"Nguyen Nhat Thu Le, Jianfeng Wu, Alexander H Rickard, Chuanwu Xi\",\"doi\":\"10.1093/jambio/lxae210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>The aim of this work was to evaluate the efficacy of an organosilicon-based, commercially available antimicrobial formulation in the My-shield® product line against bacterial surface contamination.</p><p><strong>Methods and results: </strong>The antimicrobial product was tested in vitro for its long-term persistence on surfaces and effectiveness against Staphylococcus aureus biofilms in comparison to 70% ethanol and 0.1% or 0.6% sodium hypochlorite. Field testing was also conducted over 6 weeks at a university athletic facility. In vitro studies demonstrated the log reductions achieved by the test product, 70% ethanol, and 0.1% sodium hypochlorite were 3.6, 3.1, and 3.2, respectively. The test product persisted on surfaces after washing and scrubbing, and pre-treatment with this product prevented S. aureus surface colonization for up to 30 days. In comparison, pre-treatment with 70% ethanol or 0.6% sodium hypochlorite was not protective against S. aureus biofilm formation after seven days. The field test demonstrated that weekly applications of the test product were more effective at reducing surface bacterial load than daily applications of a control product.</p><p><strong>Conclusions: </strong>The test product conferred greater long-term protection against bacterial growth and biofilm formation by S. aureus than ethanol and sodium hypochlorite. Even with less frequent applications, the test product maintained a high level of antimicrobial activity.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae210\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae210","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Evaluation of the long-term protection conferred by an organosilicon-based disinfectant formulation against bacterial contamination of surfaces.
Aims: The aim of this work was to evaluate the efficacy of an organosilicon-based, commercially available antimicrobial formulation in the My-shield® product line against bacterial surface contamination.
Methods and results: The antimicrobial product was tested in vitro for its long-term persistence on surfaces and effectiveness against Staphylococcus aureus biofilms in comparison to 70% ethanol and 0.1% or 0.6% sodium hypochlorite. Field testing was also conducted over 6 weeks at a university athletic facility. In vitro studies demonstrated the log reductions achieved by the test product, 70% ethanol, and 0.1% sodium hypochlorite were 3.6, 3.1, and 3.2, respectively. The test product persisted on surfaces after washing and scrubbing, and pre-treatment with this product prevented S. aureus surface colonization for up to 30 days. In comparison, pre-treatment with 70% ethanol or 0.6% sodium hypochlorite was not protective against S. aureus biofilm formation after seven days. The field test demonstrated that weekly applications of the test product were more effective at reducing surface bacterial load than daily applications of a control product.
Conclusions: The test product conferred greater long-term protection against bacterial growth and biofilm formation by S. aureus than ethanol and sodium hypochlorite. Even with less frequent applications, the test product maintained a high level of antimicrobial activity.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.