Yaoyao Yan, Wenying Chang, Peili Tian, Jiying Chen, Jiayin Jiang, Xianzhu Dai, Tao Jiang, Feng Luo, Caiyun Yang
{"title":"探索本地抗砷(As)细菌:揭示砷胁迫下促进植物生长的多重机制。","authors":"Yaoyao Yan, Wenying Chang, Peili Tian, Jiying Chen, Jiayin Jiang, Xianzhu Dai, Tao Jiang, Feng Luo, Caiyun Yang","doi":"10.1093/jambio/lxae228","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter).</p><p><strong>Methods and results: </strong>The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores).</p><p><strong>Conclusions: </strong>A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring native arsenic (As)-resistant bacteria: unveiling multifaceted mechanisms for plant growth promotion under As stress.\",\"authors\":\"Yaoyao Yan, Wenying Chang, Peili Tian, Jiying Chen, Jiayin Jiang, Xianzhu Dai, Tao Jiang, Feng Luo, Caiyun Yang\",\"doi\":\"10.1093/jambio/lxae228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter).</p><p><strong>Methods and results: </strong>The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores).</p><p><strong>Conclusions: </strong>A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae228\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae228","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploring native arsenic (As)-resistant bacteria: unveiling multifaceted mechanisms for plant growth promotion under As stress.
Aims: This study explores the plant growth-promoting effect (PGPE) and potential mechanisms of the arsenic (As)-resistant bacterium Flavobacterium sp. A9 (A9 hereafter).
Methods and results: The influences of A9 on the growth of Arabidopsis thaliana, lettuce, and Brassica napus under As(V) stress were investigated. Additionally, a metabolome analysis was conducted to unravel the underlying mechanisms that facilitate PGPE. Results revealed that A9 significantly enhanced the fresh weight of Arabidopsis seedlings by 62.6%-135.4% under As(V) stress. A9 significantly increased root length (19.4%), phosphorus (25.28%), chlorophyll content (59%), pod number (24.42%), and weight (18.88%), while decreasing As content (48.33%, P ≤ .05) and oxidative stress of Arabidopsis. It also significantly promoted the growth of lettuce and B. napus under As(V) stress. A9 demonstrated the capability to produce ≥31 beneficial substances contributing to plant growth promotion (e.g. gibberellic acid), stress tolerance (e.g. thiamine), and reduced As accumulation (e.g. siderophores).
Conclusions: A9 significantly promoted the plant growth under As stress and decreased As accumulation by decreasing oxidative stress and releasing beneficial compounds.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.