慢性偏瘫中风患者的显性和隐性运动学习。

IF 2.1 3区 医学 Q3 NEUROSCIENCES Journal of neurophysiology Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI:10.1152/jn.00156.2024
Jonathan M Wood, Elizabeth Thompson, Henry Wright, Liam Festa, Susanne M Morton, Darcy S Reisman, Hyosub E Kim
{"title":"慢性偏瘫中风患者的显性和隐性运动学习。","authors":"Jonathan M Wood, Elizabeth Thompson, Henry Wright, Liam Festa, Susanne M Morton, Darcy S Reisman, Hyosub E Kim","doi":"10.1152/jn.00156.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. After the first 40 strides of split-belt walking, we removed the visual feedback and instructed individuals to walk comfortably, a manipulation intended to minimize contributions from explicit learning. We used a multirate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared with controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since poststroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning. <b>NEW & NOTEWORTHY</b> Motor learning involves both implicit and explicit processes, the underlying neural substrates of which could be damaged after stroke. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke. Using a locomotor task that elicits dissociable contributions from both processes and computational modeling, we found evidence that chronic stroke causes deficits in both explicit and implicit locomotor learning.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke.\",\"authors\":\"Jonathan M Wood, Elizabeth Thompson, Henry Wright, Liam Festa, Susanne M Morton, Darcy S Reisman, Hyosub E Kim\",\"doi\":\"10.1152/jn.00156.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. After the first 40 strides of split-belt walking, we removed the visual feedback and instructed individuals to walk comfortably, a manipulation intended to minimize contributions from explicit learning. We used a multirate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared with controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since poststroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning. <b>NEW & NOTEWORTHY</b> Motor learning involves both implicit and explicit processes, the underlying neural substrates of which could be damaged after stroke. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke. Using a locomotor task that elicits dissociable contributions from both processes and computational modeling, we found evidence that chronic stroke causes deficits in both explicit and implicit locomotor learning.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00156.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00156.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

运动学习涉及显性和隐性过程,是获得和适应复杂运动技能的基础。然而,中风可能会损伤显性和/或隐性学习的神经基质,从而导致整体运动表现的缺陷。虽然这两种学习过程通常在日常生活和康复中协同使用,但还没有任何步态研究能确定中风后,当在一项任务中测试这两种学习过程的贡献时,它们是如何共同发挥作用的。在此,我们将慢性中风患者的显性和隐性运动学习与年龄和性别匹配的神经功能完好的对照组进行了比较。我们使用分带适应(两条跑步机带以不同速度运动)来评估内隐学习。我们利用分带行走过程中的视觉反馈来评估显性学习(即策略使用),帮助患者明确纠正分带造成的步长误差。在分带行走的前 40 步之后,我们移除了视觉反馈,并指示个体舒适地行走,这一操作旨在将显性学习的贡献降至最低。我们利用多速率状态空间模型来描述个体显性和隐性过程对整体行为变化的贡献。计算和行为分析表明,与对照组相比,慢性中风患者对运动学习的显性和隐性贡献都存在缺陷,这一结果与之前在步态过程中单独测试每个过程的工作背道而驰。由于中风后运动康复涉及到依赖显性和隐性运动学习的干预,未来的工作应确定如何组织运动康复干预以优化整体运动学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke.

Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. After the first 40 strides of split-belt walking, we removed the visual feedback and instructed individuals to walk comfortably, a manipulation intended to minimize contributions from explicit learning. We used a multirate state-space model to characterize individual explicit and implicit process contributions to overall behavioral change. The computational and behavioral analyses revealed that, compared with controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since poststroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning. NEW & NOTEWORTHY Motor learning involves both implicit and explicit processes, the underlying neural substrates of which could be damaged after stroke. Although both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke. Using a locomotor task that elicits dissociable contributions from both processes and computational modeling, we found evidence that chronic stroke causes deficits in both explicit and implicit locomotor learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
期刊最新文献
A 5-week centrifuge-based G training with feedback on the magnitude of G force, does not improve the perception of roll tilt during simulated coordinated turns. ALTERED CONTROL OF BREATHING IN A RAT MODEL OF ALLERGIC LOWER AIRWAY INFLAMMATION. Ictal and interictal epileptic networks of 34 patients with Hypothalamic Hamartoma on scalp electroencephalography. Investigating premotor corticospinal excitability in fast and slow voluntary contractions of the elbow flexors. Rat movements reflect internal decision dynamics in an evidence accumulation task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1