Kaija Gahm, Ryan Nguyen, Marta Acácio, Nili Anglister, Gideon Vaadia, Orr Spiegel, Noa Pinter-Wollman
{"title":"一种环绕运动路径随机化方法,用于区分动物互动的社会和空间驱动因素。","authors":"Kaija Gahm, Ryan Nguyen, Marta Acácio, Nili Anglister, Gideon Vaadia, Orr Spiegel, Noa Pinter-Wollman","doi":"10.1098/rstb.2022.0531","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures (<i>Gyps fulvus</i>) emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1912","pages":"20220531"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449205/pdf/","citationCount":"0","resultStr":"{\"title\":\"A wrap-around movement path randomization method to distinguish social and spatial drivers of animal interactions.\",\"authors\":\"Kaija Gahm, Ryan Nguyen, Marta Acácio, Nili Anglister, Gideon Vaadia, Orr Spiegel, Noa Pinter-Wollman\",\"doi\":\"10.1098/rstb.2022.0531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures (<i>Gyps fulvus</i>) emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"379 1912\",\"pages\":\"20220531\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2022.0531\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2022.0531","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
A wrap-around movement path randomization method to distinguish social and spatial drivers of animal interactions.
Studying the spatial-social interface requires tools that distinguish between social and spatial drivers of interactions. Testing hypotheses about the factors determining animal interactions often involves comparing observed interactions with reference or 'null' models. One approach to accounting for spatial drivers of social interactions in reference models is randomizing animal movement paths to decouple spatial and social phenotypes while maintaining environmental effects on movements. Here, we update a reference model that detects social attraction above the effect of spatial constraints. We explore the use of our 'wrap-around' method and compare its performance to the previous approach using agent-based simulations. The wrap-around method provides reference models that are more similar to the original tracking data, while still distinguishing between social and spatial drivers. Furthermore, the wrap-around approach results in fewer false-positives than its predecessor, especially when animals do not return to one place each night but change movement foci, either locally or directionally. Finally, we show that interactions among GPS-tracked griffon vultures (Gyps fulvus) emerge from social attraction rather than from spatial constraints on their movements. We conclude by highlighting the biological situations in which the updated method might be most suitable for testing hypotheses about the underlying causes of social interactions. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.