电子尼古丁输送系统肺毒理学的多学科方法:生物和非生物生物启发工程系统的出现。

Kambez H. Benam
{"title":"电子尼古丁输送系统肺毒理学的多学科方法:生物和非生物生物启发工程系统的出现。","authors":"Kambez H. Benam","doi":"10.1038/s44172-024-00276-3","DOIUrl":null,"url":null,"abstract":"Technology-based platforms offer crucial support for regulatory agencies in overseeing tobacco products to enhance public health protection. The use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes, has surged exponentially over the past decade. However, the understanding of the impact of ENDS on lung health remains incomplete due to scarcity of physiologically relevant technologies for evaluating their toxicity. This review examines the societal and public health impacts of ENDS, prevalent preclinical approaches in pulmonary space, and the application of emerging Organ-on-Chip technologies and bioinspired robotics for assessing ENDS respiratory toxicity. It highlights challenges in ENDS inhalation toxicology and the value of multidisciplinary bioengineering approaches for generating reliable, human-relevant regulatory data at an accelerated pace. Kambez Benam reviews preclinical approaches to assess lung health impacts of e-cigarettes, highlighting limitations of current strategies in capturing 3D lung architecture and inhalation mechanics. The review article emphasizes the promise of Organs-on-Chips and Bioinspired Robotics.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372223/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multidisciplinary approaches in electronic nicotine delivery systems pulmonary toxicology: emergence of living and non-living bioinspired engineered systems\",\"authors\":\"Kambez H. Benam\",\"doi\":\"10.1038/s44172-024-00276-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology-based platforms offer crucial support for regulatory agencies in overseeing tobacco products to enhance public health protection. The use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes, has surged exponentially over the past decade. However, the understanding of the impact of ENDS on lung health remains incomplete due to scarcity of physiologically relevant technologies for evaluating their toxicity. This review examines the societal and public health impacts of ENDS, prevalent preclinical approaches in pulmonary space, and the application of emerging Organ-on-Chip technologies and bioinspired robotics for assessing ENDS respiratory toxicity. It highlights challenges in ENDS inhalation toxicology and the value of multidisciplinary bioengineering approaches for generating reliable, human-relevant regulatory data at an accelerated pace. Kambez Benam reviews preclinical approaches to assess lung health impacts of e-cigarettes, highlighting limitations of current strategies in capturing 3D lung architecture and inhalation mechanics. The review article emphasizes the promise of Organs-on-Chips and Bioinspired Robotics.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00276-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00276-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于技术的平台为监管机构监督烟草产品以加强公众健康保护提供了重要支持。过去十年来,电子尼古丁输送系统(ENDS)(如电子香烟)的使用量激增。然而,由于缺乏评估其毒性的生理学相关技术,人们对 ENDS 对肺部健康的影响的了解仍不全面。这篇综述探讨了 ENDS 对社会和公共健康的影响、肺部空间流行的临床前方法,以及新兴芯片器官技术和生物启发机器人技术在评估 ENDS 呼吸系统毒性方面的应用。报告强调了ENDS吸入毒理学面临的挑战,以及多学科生物工程方法在加速生成可靠、与人类相关的监管数据方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multidisciplinary approaches in electronic nicotine delivery systems pulmonary toxicology: emergence of living and non-living bioinspired engineered systems
Technology-based platforms offer crucial support for regulatory agencies in overseeing tobacco products to enhance public health protection. The use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes, has surged exponentially over the past decade. However, the understanding of the impact of ENDS on lung health remains incomplete due to scarcity of physiologically relevant technologies for evaluating their toxicity. This review examines the societal and public health impacts of ENDS, prevalent preclinical approaches in pulmonary space, and the application of emerging Organ-on-Chip technologies and bioinspired robotics for assessing ENDS respiratory toxicity. It highlights challenges in ENDS inhalation toxicology and the value of multidisciplinary bioengineering approaches for generating reliable, human-relevant regulatory data at an accelerated pace. Kambez Benam reviews preclinical approaches to assess lung health impacts of e-cigarettes, highlighting limitations of current strategies in capturing 3D lung architecture and inhalation mechanics. The review article emphasizes the promise of Organs-on-Chips and Bioinspired Robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1