{"title":"利用 Sentinel-2 数据在卫星水深测量中应用梯度提升机,准确估算沿海环境中的水深","authors":"Yue Liu , Shulei Wu , Zhongqiang Wu , Shuangshuang Zhou","doi":"10.1016/j.seares.2024.102538","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate water depth estimation is crucial in coastal environmental management, resource exploration, and ecological protection. Traditional water depth measurement methods are often time-consuming and costly, especially in vast sea areas where their application is limited. However, with the rapid development of remote sensing technology, particularly the widespread use of high-resolution satellite imagery, water depth remote sensing has emerged as a more efficient, economical, and widely applicable solution. In this study, we utilized Sentinel-2 satellite data and applied various algorithms to accurately estimate water depth in the Nanshan Port area. The results showed that the Gradient Boosting Machine (GBM) model excelled in monitoring shallow water and coastal environments, effectively addressing challenges such as light attenuation and water scattering in turbid waters. Compared to traditional methods, GBM-generated predictions were smoother and more detailed. This study not only demonstrates the significant potential of satellite remote sensing for water depth measurement but also points to future directions for algorithm optimization and the integration of remote sensing technologies. It is expected to bring revolutionary progress to oceanic scientific research and coastal management.</p></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"201 ","pages":"Article 102538"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1385110124000716/pdfft?md5=71c2320667a9815dd0b6615090f7d998&pid=1-s2.0-S1385110124000716-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of gradient boosting machine in satellite-derived bathymetry using Sentinel-2 data for accurate water depth estimation in coastal environments\",\"authors\":\"Yue Liu , Shulei Wu , Zhongqiang Wu , Shuangshuang Zhou\",\"doi\":\"10.1016/j.seares.2024.102538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate water depth estimation is crucial in coastal environmental management, resource exploration, and ecological protection. Traditional water depth measurement methods are often time-consuming and costly, especially in vast sea areas where their application is limited. However, with the rapid development of remote sensing technology, particularly the widespread use of high-resolution satellite imagery, water depth remote sensing has emerged as a more efficient, economical, and widely applicable solution. In this study, we utilized Sentinel-2 satellite data and applied various algorithms to accurately estimate water depth in the Nanshan Port area. The results showed that the Gradient Boosting Machine (GBM) model excelled in monitoring shallow water and coastal environments, effectively addressing challenges such as light attenuation and water scattering in turbid waters. Compared to traditional methods, GBM-generated predictions were smoother and more detailed. This study not only demonstrates the significant potential of satellite remote sensing for water depth measurement but also points to future directions for algorithm optimization and the integration of remote sensing technologies. It is expected to bring revolutionary progress to oceanic scientific research and coastal management.</p></div>\",\"PeriodicalId\":50056,\"journal\":{\"name\":\"Journal of Sea Research\",\"volume\":\"201 \",\"pages\":\"Article 102538\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1385110124000716/pdfft?md5=71c2320667a9815dd0b6615090f7d998&pid=1-s2.0-S1385110124000716-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sea Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385110124000716\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385110124000716","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Application of gradient boosting machine in satellite-derived bathymetry using Sentinel-2 data for accurate water depth estimation in coastal environments
Accurate water depth estimation is crucial in coastal environmental management, resource exploration, and ecological protection. Traditional water depth measurement methods are often time-consuming and costly, especially in vast sea areas where their application is limited. However, with the rapid development of remote sensing technology, particularly the widespread use of high-resolution satellite imagery, water depth remote sensing has emerged as a more efficient, economical, and widely applicable solution. In this study, we utilized Sentinel-2 satellite data and applied various algorithms to accurately estimate water depth in the Nanshan Port area. The results showed that the Gradient Boosting Machine (GBM) model excelled in monitoring shallow water and coastal environments, effectively addressing challenges such as light attenuation and water scattering in turbid waters. Compared to traditional methods, GBM-generated predictions were smoother and more detailed. This study not only demonstrates the significant potential of satellite remote sensing for water depth measurement but also points to future directions for algorithm optimization and the integration of remote sensing technologies. It is expected to bring revolutionary progress to oceanic scientific research and coastal management.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.