{"title":"量化城市人口流动中的空间互动中心性:基于流动特征和网络拓扑的定位衡量标准","authors":"","doi":"10.1016/j.scs.2024.105769","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial interaction centrality reflects the relative importance of population mobility within a location in urban population mobility. Population mobility networks visually represent urban population mobility, with mobility features and network topology contributing to the quantification of spatial interaction centrality of locations (i.e., geographical nodes). However, existing centrality measures rarely consider mobility features and network topology simultaneously. Centrality quantification also ignores the differences in distance effects between long- and short-distance trips. These factors have led to the inaccurate quantification of centrality. We propose an algorithm called k-dis-weight-shell that quantifies the spatial interaction centrality of geographical nodes at different spatiotemporal scales. Considering the different effects of distance on long- and short-distance trips, we use a spatial continuous wavelet transformation to estimate the radiation radius of geographical nodes. Then, by combining network topology with mobility features (mobility distance and flow), the algorithm transforms them into a ranked order of spatial interaction centrality. Tested in Wuhan and Chengdu, our algorithm outperforms six existing benchmarks. For cases in urban planning and epidemic management, results show that k-dis-weight-shell effectively distinguishes similarities and differences between the distribution of population mobility's spatial interaction centrality and the urban center hierarchy at a coarse spatiotemporal scale. Additionally, it reveals a double wave phenomenon of spatiotemporal correlation between population mobility and COVID-19 transmission before and after lockdown at a fine spatiotemporal scale.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying spatial interaction centrality in urban population mobility: A mobility feature- and network topology-based locational measure\",\"authors\":\"\",\"doi\":\"10.1016/j.scs.2024.105769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial interaction centrality reflects the relative importance of population mobility within a location in urban population mobility. Population mobility networks visually represent urban population mobility, with mobility features and network topology contributing to the quantification of spatial interaction centrality of locations (i.e., geographical nodes). However, existing centrality measures rarely consider mobility features and network topology simultaneously. Centrality quantification also ignores the differences in distance effects between long- and short-distance trips. These factors have led to the inaccurate quantification of centrality. We propose an algorithm called k-dis-weight-shell that quantifies the spatial interaction centrality of geographical nodes at different spatiotemporal scales. Considering the different effects of distance on long- and short-distance trips, we use a spatial continuous wavelet transformation to estimate the radiation radius of geographical nodes. Then, by combining network topology with mobility features (mobility distance and flow), the algorithm transforms them into a ranked order of spatial interaction centrality. Tested in Wuhan and Chengdu, our algorithm outperforms six existing benchmarks. For cases in urban planning and epidemic management, results show that k-dis-weight-shell effectively distinguishes similarities and differences between the distribution of population mobility's spatial interaction centrality and the urban center hierarchy at a coarse spatiotemporal scale. Additionally, it reveals a double wave phenomenon of spatiotemporal correlation between population mobility and COVID-19 transmission before and after lockdown at a fine spatiotemporal scale.</p></div>\",\"PeriodicalId\":48659,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210670724005948\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724005948","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Quantifying spatial interaction centrality in urban population mobility: A mobility feature- and network topology-based locational measure
Spatial interaction centrality reflects the relative importance of population mobility within a location in urban population mobility. Population mobility networks visually represent urban population mobility, with mobility features and network topology contributing to the quantification of spatial interaction centrality of locations (i.e., geographical nodes). However, existing centrality measures rarely consider mobility features and network topology simultaneously. Centrality quantification also ignores the differences in distance effects between long- and short-distance trips. These factors have led to the inaccurate quantification of centrality. We propose an algorithm called k-dis-weight-shell that quantifies the spatial interaction centrality of geographical nodes at different spatiotemporal scales. Considering the different effects of distance on long- and short-distance trips, we use a spatial continuous wavelet transformation to estimate the radiation radius of geographical nodes. Then, by combining network topology with mobility features (mobility distance and flow), the algorithm transforms them into a ranked order of spatial interaction centrality. Tested in Wuhan and Chengdu, our algorithm outperforms six existing benchmarks. For cases in urban planning and epidemic management, results show that k-dis-weight-shell effectively distinguishes similarities and differences between the distribution of population mobility's spatial interaction centrality and the urban center hierarchy at a coarse spatiotemporal scale. Additionally, it reveals a double wave phenomenon of spatiotemporal correlation between population mobility and COVID-19 transmission before and after lockdown at a fine spatiotemporal scale.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;