Di Wu , Liang Kong , Gangqiang Kong , Jincheng Fang , Chenglong Wang , Yifei Wang
{"title":"用于提取地热的能量保留桩的热力学行为","authors":"Di Wu , Liang Kong , Gangqiang Kong , Jincheng Fang , Chenglong Wang , Yifei Wang","doi":"10.1016/j.gete.2024.100587","DOIUrl":null,"url":null,"abstract":"<div><p>A field test was conducted to assess the thermo-mechanical behavior of a full-scale energy retaining pile (ERP) adjacent to a utility tunnel during geothermal extraction. Numerical models were also established and calibrated using measured data. The extracted thermal power, temperature, thermally induced strain and stress, and bending moment of the ERP were analyzed. Additionally, a comparative analysis was conducted using validated numerical models to assess the impact of the air temperature (<em>T</em><sub>air</sub>) inside the adjacent utility tunnel on the thermo-mechanical behavior of the ERP. The findings highlight that the extraction thermal power of the tested ERP was 57 W/m, with the short-term geothermal extraction operation yielding even higher values of 200–250 W/m. The operation of the adjacent high-temperature utility tunnel can lead to an average increase of approximately 15 % in the extracted thermal power of the ERP. Additionally, during the geothermal extraction, regardless of the value of <em>T</em><sub>air</sub>, the ERP primarily reflected in changes to the axial thermo-mechanical behavior. However, the higher-temperature utility tunnel can result in a notable bending moment of the ERP prior to the geothermal extraction operation. Thus, considering the influence of <em>T</em><sub>air</sub> on the thermo-mechanical behavior of the ERP becomes crucial during the preliminary design phase.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100587"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-mechanical behavior of an energy retaining pile for geothermal extraction\",\"authors\":\"Di Wu , Liang Kong , Gangqiang Kong , Jincheng Fang , Chenglong Wang , Yifei Wang\",\"doi\":\"10.1016/j.gete.2024.100587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A field test was conducted to assess the thermo-mechanical behavior of a full-scale energy retaining pile (ERP) adjacent to a utility tunnel during geothermal extraction. Numerical models were also established and calibrated using measured data. The extracted thermal power, temperature, thermally induced strain and stress, and bending moment of the ERP were analyzed. Additionally, a comparative analysis was conducted using validated numerical models to assess the impact of the air temperature (<em>T</em><sub>air</sub>) inside the adjacent utility tunnel on the thermo-mechanical behavior of the ERP. The findings highlight that the extraction thermal power of the tested ERP was 57 W/m, with the short-term geothermal extraction operation yielding even higher values of 200–250 W/m. The operation of the adjacent high-temperature utility tunnel can lead to an average increase of approximately 15 % in the extracted thermal power of the ERP. Additionally, during the geothermal extraction, regardless of the value of <em>T</em><sub>air</sub>, the ERP primarily reflected in changes to the axial thermo-mechanical behavior. However, the higher-temperature utility tunnel can result in a notable bending moment of the ERP prior to the geothermal extraction operation. Thus, considering the influence of <em>T</em><sub>air</sub> on the thermo-mechanical behavior of the ERP becomes crucial during the preliminary design phase.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"40 \",\"pages\":\"Article 100587\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000546\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000546","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermo-mechanical behavior of an energy retaining pile for geothermal extraction
A field test was conducted to assess the thermo-mechanical behavior of a full-scale energy retaining pile (ERP) adjacent to a utility tunnel during geothermal extraction. Numerical models were also established and calibrated using measured data. The extracted thermal power, temperature, thermally induced strain and stress, and bending moment of the ERP were analyzed. Additionally, a comparative analysis was conducted using validated numerical models to assess the impact of the air temperature (Tair) inside the adjacent utility tunnel on the thermo-mechanical behavior of the ERP. The findings highlight that the extraction thermal power of the tested ERP was 57 W/m, with the short-term geothermal extraction operation yielding even higher values of 200–250 W/m. The operation of the adjacent high-temperature utility tunnel can lead to an average increase of approximately 15 % in the extracted thermal power of the ERP. Additionally, during the geothermal extraction, regardless of the value of Tair, the ERP primarily reflected in changes to the axial thermo-mechanical behavior. However, the higher-temperature utility tunnel can result in a notable bending moment of the ERP prior to the geothermal extraction operation. Thus, considering the influence of Tair on the thermo-mechanical behavior of the ERP becomes crucial during the preliminary design phase.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.