{"title":"光照强度在不同蒸汽压不足条件下的水分传输和平衡中的作用","authors":"","doi":"10.1016/j.envexpbot.2024.105943","DOIUrl":null,"url":null,"abstract":"<div><p>Vapor pressure deficit (VPD) directly affects the driving force of plant water movement by altering the water potential gradient between the atmosphere and plants and indirectly influences the resistance to water movement by regulating plant structure. Concurrently, light intensity modulates both the driving force and resistance to water movement by regulating plant morphology and nonstructural carbohydrate synthesis. Despite significant advances in the understanding of the regulatory effects of VPD on water absorption and transport in tomatoes, the effect of light intensity regulation under varying VPDs on water transport and homeostasis remains to be clarified. Here, we investigated the effects of two light intensities (L300; 300 µmol m<sup>–2</sup> s<sup>–1</sup>, L600; 600 µmol m<sup>–2</sup> s<sup>–1</sup>) on plant anatomy, physiological traits, hydraulic properties, and expression of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) in tomatoes subjected to long-term high and low VPDs. In addition, we analysed the correlations and path coefficients of these indicators. These results indicate that higher light intensity reduces resistance to water movement by enhancing root morphology, vessel parameters in roots and stems, leaf vein density, stomatal morphology, physiological traits, and expression of <em>SlTIPs</em> and <em>SlPIPs</em> in both roots and leaves. Concurrently, increased light intensity boosts the driving force of water movement by amplifying the water potential difference and transpiration under low VPD. However, under high VPD, elevated light intensities create a larger water potential difference, prompting plants to reduce this excessive force by decreasing transpiration and stomatal conductance, thereby maintaining water homeostasis. These findings suggest that light intensity can effectively regulate water homeostasis by dynamically optimising plant structure, hydraulic properties, and the expression of <em>SlTIPs</em> and <em>SlPIPs</em> across different VPDs, providing a theoretical foundation for practical light intensity management in agriculture.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of light intensity in water transport and homeostasis across different vapor pressure deficit conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vapor pressure deficit (VPD) directly affects the driving force of plant water movement by altering the water potential gradient between the atmosphere and plants and indirectly influences the resistance to water movement by regulating plant structure. Concurrently, light intensity modulates both the driving force and resistance to water movement by regulating plant morphology and nonstructural carbohydrate synthesis. Despite significant advances in the understanding of the regulatory effects of VPD on water absorption and transport in tomatoes, the effect of light intensity regulation under varying VPDs on water transport and homeostasis remains to be clarified. Here, we investigated the effects of two light intensities (L300; 300 µmol m<sup>–2</sup> s<sup>–1</sup>, L600; 600 µmol m<sup>–2</sup> s<sup>–1</sup>) on plant anatomy, physiological traits, hydraulic properties, and expression of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) in tomatoes subjected to long-term high and low VPDs. In addition, we analysed the correlations and path coefficients of these indicators. These results indicate that higher light intensity reduces resistance to water movement by enhancing root morphology, vessel parameters in roots and stems, leaf vein density, stomatal morphology, physiological traits, and expression of <em>SlTIPs</em> and <em>SlPIPs</em> in both roots and leaves. Concurrently, increased light intensity boosts the driving force of water movement by amplifying the water potential difference and transpiration under low VPD. However, under high VPD, elevated light intensities create a larger water potential difference, prompting plants to reduce this excessive force by decreasing transpiration and stomatal conductance, thereby maintaining water homeostasis. These findings suggest that light intensity can effectively regulate water homeostasis by dynamically optimising plant structure, hydraulic properties, and the expression of <em>SlTIPs</em> and <em>SlPIPs</em> across different VPDs, providing a theoretical foundation for practical light intensity management in agriculture.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003010\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The role of light intensity in water transport and homeostasis across different vapor pressure deficit conditions
Vapor pressure deficit (VPD) directly affects the driving force of plant water movement by altering the water potential gradient between the atmosphere and plants and indirectly influences the resistance to water movement by regulating plant structure. Concurrently, light intensity modulates both the driving force and resistance to water movement by regulating plant morphology and nonstructural carbohydrate synthesis. Despite significant advances in the understanding of the regulatory effects of VPD on water absorption and transport in tomatoes, the effect of light intensity regulation under varying VPDs on water transport and homeostasis remains to be clarified. Here, we investigated the effects of two light intensities (L300; 300 µmol m–2 s–1, L600; 600 µmol m–2 s–1) on plant anatomy, physiological traits, hydraulic properties, and expression of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) in tomatoes subjected to long-term high and low VPDs. In addition, we analysed the correlations and path coefficients of these indicators. These results indicate that higher light intensity reduces resistance to water movement by enhancing root morphology, vessel parameters in roots and stems, leaf vein density, stomatal morphology, physiological traits, and expression of SlTIPs and SlPIPs in both roots and leaves. Concurrently, increased light intensity boosts the driving force of water movement by amplifying the water potential difference and transpiration under low VPD. However, under high VPD, elevated light intensities create a larger water potential difference, prompting plants to reduce this excessive force by decreasing transpiration and stomatal conductance, thereby maintaining water homeostasis. These findings suggest that light intensity can effectively regulate water homeostasis by dynamically optimising plant structure, hydraulic properties, and the expression of SlTIPs and SlPIPs across different VPDs, providing a theoretical foundation for practical light intensity management in agriculture.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.