Nosheen Abid , Md Kislu Noman , György Kovács , Syed Mohammed Shamsul Islam , Tosin Adewumi , Paul Lavery , Faisal Shafait , Marcus Liwicki
{"title":"利用无监督课程学习(UCL)进行海草分类","authors":"Nosheen Abid , Md Kislu Noman , György Kovács , Syed Mohammed Shamsul Islam , Tosin Adewumi , Paul Lavery , Faisal Shafait , Marcus Liwicki","doi":"10.1016/j.ecoinf.2024.102804","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrass ecosystems are pivotal in marine environments, serving as crucial habitats for diverse marine species and contributing significantly to carbon sequestration. Accurate classification of seagrass species from underwater images is imperative for monitoring and preserving these ecosystems. This paper introduces Unsupervised Curriculum Learning (UCL) to seagrass classification using the <em>DeepSeagrass</em> dataset. UCL progressively learns from simpler to more complex examples, <em>enhancing</em> the model's ability to discern seagrass features in a curriculum-driven manner. Experiments employing state-of-the-art deep learning architectures, convolutional neural networks (CNNs), show that UCL achieved overall 90.12 % precision and 89 % recall, which significantly improves classification accuracy and robustness, outperforming some traditional supervised learning approaches like SimCLR, and unsupervised approaches like Zero-shot CLIP. The methodology of UCL involves four main steps: high-dimensional feature extraction, pseudo-label generation through clustering, reliable sample selection, and fine-tuning the model. The iterative UCL framework refines CNN's learning of underwater images, demonstrating superior accuracy, generalization, and adaptability to unseen seagrass and background samples of undersea images. The findings presented in this paper contribute to the advancement of seagrass classification techniques, providing valuable insights into the conservation and management of marine ecosystems. The code and dataset are made publicly available and can be assessed here: <span>https://github.com/nabid69/Unsupervised-Curriculum-Learning—UCL.</span></p></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003467/pdfft?md5=4f11af008f2fed73b50d654a9fa27b94&pid=1-s2.0-S1574954124003467-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Seagrass classification using unsupervised curriculum learning (UCL)\",\"authors\":\"Nosheen Abid , Md Kislu Noman , György Kovács , Syed Mohammed Shamsul Islam , Tosin Adewumi , Paul Lavery , Faisal Shafait , Marcus Liwicki\",\"doi\":\"10.1016/j.ecoinf.2024.102804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrass ecosystems are pivotal in marine environments, serving as crucial habitats for diverse marine species and contributing significantly to carbon sequestration. Accurate classification of seagrass species from underwater images is imperative for monitoring and preserving these ecosystems. This paper introduces Unsupervised Curriculum Learning (UCL) to seagrass classification using the <em>DeepSeagrass</em> dataset. UCL progressively learns from simpler to more complex examples, <em>enhancing</em> the model's ability to discern seagrass features in a curriculum-driven manner. Experiments employing state-of-the-art deep learning architectures, convolutional neural networks (CNNs), show that UCL achieved overall 90.12 % precision and 89 % recall, which significantly improves classification accuracy and robustness, outperforming some traditional supervised learning approaches like SimCLR, and unsupervised approaches like Zero-shot CLIP. The methodology of UCL involves four main steps: high-dimensional feature extraction, pseudo-label generation through clustering, reliable sample selection, and fine-tuning the model. The iterative UCL framework refines CNN's learning of underwater images, demonstrating superior accuracy, generalization, and adaptability to unseen seagrass and background samples of undersea images. The findings presented in this paper contribute to the advancement of seagrass classification techniques, providing valuable insights into the conservation and management of marine ecosystems. The code and dataset are made publicly available and can be assessed here: <span>https://github.com/nabid69/Unsupervised-Curriculum-Learning—UCL.</span></p></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003467/pdfft?md5=4f11af008f2fed73b50d654a9fa27b94&pid=1-s2.0-S1574954124003467-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003467\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003467","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Seagrass classification using unsupervised curriculum learning (UCL)
Seagrass ecosystems are pivotal in marine environments, serving as crucial habitats for diverse marine species and contributing significantly to carbon sequestration. Accurate classification of seagrass species from underwater images is imperative for monitoring and preserving these ecosystems. This paper introduces Unsupervised Curriculum Learning (UCL) to seagrass classification using the DeepSeagrass dataset. UCL progressively learns from simpler to more complex examples, enhancing the model's ability to discern seagrass features in a curriculum-driven manner. Experiments employing state-of-the-art deep learning architectures, convolutional neural networks (CNNs), show that UCL achieved overall 90.12 % precision and 89 % recall, which significantly improves classification accuracy and robustness, outperforming some traditional supervised learning approaches like SimCLR, and unsupervised approaches like Zero-shot CLIP. The methodology of UCL involves four main steps: high-dimensional feature extraction, pseudo-label generation through clustering, reliable sample selection, and fine-tuning the model. The iterative UCL framework refines CNN's learning of underwater images, demonstrating superior accuracy, generalization, and adaptability to unseen seagrass and background samples of undersea images. The findings presented in this paper contribute to the advancement of seagrass classification techniques, providing valuable insights into the conservation and management of marine ecosystems. The code and dataset are made publicly available and can be assessed here: https://github.com/nabid69/Unsupervised-Curriculum-Learning—UCL.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.