PickShift:一种用户友好型 Python 工具,用于评估与从历史平面测量数据中提取的多边形相关的地表不确定性

IF 2.4 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING SoftwareX Pub Date : 2024-09-01 DOI:10.1016/j.softx.2024.101866
Timothée Jautzy , Pierrick Freys , Valentin Chardon , Romain Wenger , Gilles Rixhon , Laurent Schmitt , Pierre-Alexis Herrault
{"title":"PickShift:一种用户友好型 Python 工具,用于评估与从历史平面测量数据中提取的多边形相关的地表不确定性","authors":"Timothée Jautzy ,&nbsp;Pierrick Freys ,&nbsp;Valentin Chardon ,&nbsp;Romain Wenger ,&nbsp;Gilles Rixhon ,&nbsp;Laurent Schmitt ,&nbsp;Pierre-Alexis Herrault","doi":"10.1016/j.softx.2024.101866","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing use of GIS software's, historical planimetric data such as orthophotos and old maps represent key data sources to analyze spatio-temporal landscape evolution. However, geometric error inherent to these data are too often overlooked, possibly leading to confusing misinterpretation of measured surficial changes. The user-friendly Python tool 'PickShift', based on a Monte-Carlo approach, addresses this critical issue by quantifying the surficial uncertainty associated with any features digitized from historical planimetric data. This software provides a valuable framework for a more accurate assessment of landscape dynamics and associated uncertainties.</p></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"27 ","pages":"Article 101866"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235271102400236X/pdfft?md5=07a811d6f76bf41ead6493892924679b&pid=1-s2.0-S235271102400236X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PickShift: A user-friendly Python tool to assess the surficial uncertainties associated with polygons extracted from historical planimetric data\",\"authors\":\"Timothée Jautzy ,&nbsp;Pierrick Freys ,&nbsp;Valentin Chardon ,&nbsp;Romain Wenger ,&nbsp;Gilles Rixhon ,&nbsp;Laurent Schmitt ,&nbsp;Pierre-Alexis Herrault\",\"doi\":\"10.1016/j.softx.2024.101866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing use of GIS software's, historical planimetric data such as orthophotos and old maps represent key data sources to analyze spatio-temporal landscape evolution. However, geometric error inherent to these data are too often overlooked, possibly leading to confusing misinterpretation of measured surficial changes. The user-friendly Python tool 'PickShift', based on a Monte-Carlo approach, addresses this critical issue by quantifying the surficial uncertainty associated with any features digitized from historical planimetric data. This software provides a valuable framework for a more accurate assessment of landscape dynamics and associated uncertainties.</p></div>\",\"PeriodicalId\":21905,\"journal\":{\"name\":\"SoftwareX\",\"volume\":\"27 \",\"pages\":\"Article 101866\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235271102400236X/pdfft?md5=07a811d6f76bf41ead6493892924679b&pid=1-s2.0-S235271102400236X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoftwareX\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235271102400236X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235271102400236X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

随着地理信息系统软件的使用日益广泛,正射影像图和旧地图等历史平面测量数据成为分析时空景观演变的关键数据源。然而,这些数据固有的几何误差往往被忽视,可能导致对测量的地表变化产生混乱的误读。用户友好的 Python 工具 "PickShift "基于蒙特卡洛方法,通过量化从历史平面测量数据中数字化的任何地物相关的地表不确定性,解决了这一关键问题。该软件为更准确地评估景观动态和相关不确定性提供了一个宝贵的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PickShift: A user-friendly Python tool to assess the surficial uncertainties associated with polygons extracted from historical planimetric data

With the increasing use of GIS software's, historical planimetric data such as orthophotos and old maps represent key data sources to analyze spatio-temporal landscape evolution. However, geometric error inherent to these data are too often overlooked, possibly leading to confusing misinterpretation of measured surficial changes. The user-friendly Python tool 'PickShift', based on a Monte-Carlo approach, addresses this critical issue by quantifying the surficial uncertainty associated with any features digitized from historical planimetric data. This software provides a valuable framework for a more accurate assessment of landscape dynamics and associated uncertainties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SoftwareX
SoftwareX COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.50
自引率
2.90%
发文量
184
审稿时长
9 weeks
期刊介绍: SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.
期刊最新文献
CARLA-GymDrive: Autonomous driving episode generation for the Carla simulator in a gym environment Version [1.0]- HAT-VIS — A MATLAB-based hypergraph visualization tool The pymcdm-reidentify tool: Advanced methods for MCDA model re-identification COMBEAMS: A numerical tool for the structural verification of steel-concrete composite beams QMol-grid : A MATLAB package for quantum-mechanical simulations in atomic and molecular systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1