不同加载条件下结晶超高分子量聚乙烯轴向拉伸响应的分子动力学研究

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-08-30 DOI:10.1016/j.polymer.2024.127564
{"title":"不同加载条件下结晶超高分子量聚乙烯轴向拉伸响应的分子动力学研究","authors":"","doi":"10.1016/j.polymer.2024.127564","DOIUrl":null,"url":null,"abstract":"<div><p>Through molecular dynamics simulations, we investigated the effects of temperature on the axial tensile behavior of ultra-high molecular weight polyethylene (UHMWPE) crystals, considering the combined effects of transverse compression, strain rate, and molecular weight. The effects of temperature over the range of 100 K to 450 K is shown to reduce the mechanical properties. Existing chain end defects facilitate chain sliding and induce stress concentration in adjacent molecules, thereby reducing the strength and modulus of crystals. Lower molecular weight and higher temperatures promote chain sliding, while higher transverse compression and increased strain rates inhibit chain sliding, resulting in higher properties. Additionally, higher temperatures increase stress concentration due to thermal vibrations, which induce localized high stress conditions within polyethylene chains. The transition of the failure mode from chain sliding to bond breakage occurs at strain rates between 10<sup>12</sup> s<sup>−1</sup> and 10<sup>13</sup> s<sup>−1</sup>, and is found to be independent of temperature, pressure, and molecular weight. The results are compared to the response of crystals without chain end defects. These insights contribute to a deeper understanding of the behavior of UHMWPE crystals under extreme loading conditions.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics study of axial tensile response of crystalline ultra-high molecular weight polyethylene under different loading conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Through molecular dynamics simulations, we investigated the effects of temperature on the axial tensile behavior of ultra-high molecular weight polyethylene (UHMWPE) crystals, considering the combined effects of transverse compression, strain rate, and molecular weight. The effects of temperature over the range of 100 K to 450 K is shown to reduce the mechanical properties. Existing chain end defects facilitate chain sliding and induce stress concentration in adjacent molecules, thereby reducing the strength and modulus of crystals. Lower molecular weight and higher temperatures promote chain sliding, while higher transverse compression and increased strain rates inhibit chain sliding, resulting in higher properties. Additionally, higher temperatures increase stress concentration due to thermal vibrations, which induce localized high stress conditions within polyethylene chains. The transition of the failure mode from chain sliding to bond breakage occurs at strain rates between 10<sup>12</sup> s<sup>−1</sup> and 10<sup>13</sup> s<sup>−1</sup>, and is found to be independent of temperature, pressure, and molecular weight. The results are compared to the response of crystals without chain end defects. These insights contribute to a deeper understanding of the behavior of UHMWPE crystals under extreme loading conditions.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124009005\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009005","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

考虑到横向压缩、应变率和分子量的综合影响,我们通过分子动力学模拟研究了温度对超高分子量聚乙烯(UHMWPE)晶体轴向拉伸行为的影响。结果表明,温度在 100 K 至 450 K 范围内会降低机械性能。现有的链端缺陷会促进链的滑动并引起相邻分子的应力集中,从而降低晶体的强度和模量。较低的分子量和较高的温度会促进链的滑动,而较高的横向压缩率和应变率的增加则会抑制链的滑动,从而获得更高的性能。此外,较高的温度会增加热振动导致的应力集中,从而在聚乙烯链内产生局部高应力条件。应变速率在 1012 s-1 和 1013 s-1 之间时,失效模式会从链滑动过渡到键断裂,并且与温度、压力和分子量无关。研究结果与没有链端缺陷的晶体的反应进行了比较。这些见解有助于加深对超高分子量聚乙烯晶体在极端加载条件下行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular dynamics study of axial tensile response of crystalline ultra-high molecular weight polyethylene under different loading conditions

Through molecular dynamics simulations, we investigated the effects of temperature on the axial tensile behavior of ultra-high molecular weight polyethylene (UHMWPE) crystals, considering the combined effects of transverse compression, strain rate, and molecular weight. The effects of temperature over the range of 100 K to 450 K is shown to reduce the mechanical properties. Existing chain end defects facilitate chain sliding and induce stress concentration in adjacent molecules, thereby reducing the strength and modulus of crystals. Lower molecular weight and higher temperatures promote chain sliding, while higher transverse compression and increased strain rates inhibit chain sliding, resulting in higher properties. Additionally, higher temperatures increase stress concentration due to thermal vibrations, which induce localized high stress conditions within polyethylene chains. The transition of the failure mode from chain sliding to bond breakage occurs at strain rates between 1012 s−1 and 1013 s−1, and is found to be independent of temperature, pressure, and molecular weight. The results are compared to the response of crystals without chain end defects. These insights contribute to a deeper understanding of the behavior of UHMWPE crystals under extreme loading conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC Dilatational rheological studies on the surface micelles of Poly(styrene)-b-Poly(4-vinyl pyridine) block copolymer at the air-water interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1