Xu Zhang , Bo Li , Xudong Niu , Zhengyang Qu , Fan Shi , Jun Tu , Xiaochun Song , Qiao Wu
{"title":"针对环向传播高频雷电波的 EMAT 新型振幅增强方法","authors":"Xu Zhang , Bo Li , Xudong Niu , Zhengyang Qu , Fan Shi , Jun Tu , Xiaochun Song , Qiao Wu","doi":"10.1016/j.ndteint.2024.103231","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, in terms of resolution and excitation efficiency for pipeline inspection, the high-frequency Rayleigh-like wave excited by an EMAT with a traditional Rayleigh wave EMAT structure is not optimal when using the same magnet volume. This paper introduces an EMAT performance evaluation method focused on 'bandwidth' in the high-frequency-thickness region of circumferential guided waves. A wavenumber spectrum analysis method utilizing combined equivalent surface stresses is proposed to quantify this optimize design. Comparative studies, including theoretical analysis and experimental validation, demonstrate that incorporating bandwidth significantly improves the design of Rayleigh-like waves at high frequencies. The proposed EMAT achieves a performance improvement of 2.4 times for inside pipe excitation and 2.6 times for outside pipe excitation over the conventional structure. The occurrence of multiple wave packets outside the optimal excitation frequency range is acknowledged. Therefore, this method offers a new approach for optimizing EMATs for Rayleigh-like waves.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103231"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel amplitude enhancement method of EMAT for High-frequency Rayleigh-like waves in Circumferential propagation\",\"authors\":\"Xu Zhang , Bo Li , Xudong Niu , Zhengyang Qu , Fan Shi , Jun Tu , Xiaochun Song , Qiao Wu\",\"doi\":\"10.1016/j.ndteint.2024.103231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, in terms of resolution and excitation efficiency for pipeline inspection, the high-frequency Rayleigh-like wave excited by an EMAT with a traditional Rayleigh wave EMAT structure is not optimal when using the same magnet volume. This paper introduces an EMAT performance evaluation method focused on 'bandwidth' in the high-frequency-thickness region of circumferential guided waves. A wavenumber spectrum analysis method utilizing combined equivalent surface stresses is proposed to quantify this optimize design. Comparative studies, including theoretical analysis and experimental validation, demonstrate that incorporating bandwidth significantly improves the design of Rayleigh-like waves at high frequencies. The proposed EMAT achieves a performance improvement of 2.4 times for inside pipe excitation and 2.6 times for outside pipe excitation over the conventional structure. The occurrence of multiple wave packets outside the optimal excitation frequency range is acknowledged. Therefore, this method offers a new approach for optimizing EMATs for Rayleigh-like waves.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"148 \",\"pages\":\"Article 103231\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001968\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001968","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A novel amplitude enhancement method of EMAT for High-frequency Rayleigh-like waves in Circumferential propagation
Currently, in terms of resolution and excitation efficiency for pipeline inspection, the high-frequency Rayleigh-like wave excited by an EMAT with a traditional Rayleigh wave EMAT structure is not optimal when using the same magnet volume. This paper introduces an EMAT performance evaluation method focused on 'bandwidth' in the high-frequency-thickness region of circumferential guided waves. A wavenumber spectrum analysis method utilizing combined equivalent surface stresses is proposed to quantify this optimize design. Comparative studies, including theoretical analysis and experimental validation, demonstrate that incorporating bandwidth significantly improves the design of Rayleigh-like waves at high frequencies. The proposed EMAT achieves a performance improvement of 2.4 times for inside pipe excitation and 2.6 times for outside pipe excitation over the conventional structure. The occurrence of multiple wave packets outside the optimal excitation frequency range is acknowledged. Therefore, this method offers a new approach for optimizing EMATs for Rayleigh-like waves.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.