取代基对二靛红二腙席夫碱化学和生物特性的影响:DFT 和对接研究

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-08-31 DOI:10.1016/j.compbiolchem.2024.108190
Mohamed Shaker S. Adam , Zahraa H.A. Al-Ateya , Mohamed M. Makhlouf , Obadah S. Abdel-Rahman , Amneh Shtaiwi , Ahmed Khalil
{"title":"取代基对二靛红二腙席夫碱化学和生物特性的影响:DFT 和对接研究","authors":"Mohamed Shaker S. Adam ,&nbsp;Zahraa H.A. Al-Ateya ,&nbsp;Mohamed M. Makhlouf ,&nbsp;Obadah S. Abdel-Rahman ,&nbsp;Amneh Shtaiwi ,&nbsp;Ahmed Khalil","doi":"10.1016/j.compbiolchem.2024.108190","DOIUrl":null,"url":null,"abstract":"<div><p>According to the considered role of lipophilicity-hydrophobicity on organic Schiff base hydrazones, different substituents of phenyl, ethyl, and methyl groups were inserted in the synthetic strategy of diisatin dihydrazones (L1–4). The biochemical enhancement was evaluated depending on their inhibitive potential of the growth power of three human tumor cells, fungi, and bacteria. The biochemical assays assigned the effected role of different substituents of phenyl, ethyl, and methyl groups on the effectiveness of their diisatin dihydrazone reagents. The interacting modes with calf thymus DNA (<em>i.e.</em> Ct-DNA) were studied <em>via</em> viscometric and spectrophotometric titration.</p><p>The organo-reagent L1 with the oxalic derivative assigned a performed inhibitive action for the examined microbes and the human tumor cell lines growing up over the terephthalic (L4) &gt; malonic (L2) &gt; succinic (L3) ones. From <em>K</em><sub>b</sub> = binding constant, and <span><math><mrow><mo>∆</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>≠</mo></mrow></msubsup></mrow></math></span> = Gibb’s free energy values, the binding of interaction within Ct-DNA was evaluated for all compounds (L1–4), in which L1, L3, and L4 assigned the highest reactivity referring to the covalent/non-covalent modes of interaction, as given for (L1–4), 14.32, 13.28, 10.87, and 12.41 × 10<sup>7</sup> mol<sup>−1</sup> dm<sup>3</sup>, and −45<sup>.1</sup>7, −43.24, −43.75, and −44.05 kJ mol<sup>−1</sup>, respectively. DFT and docking studies were achieved to support the current work.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108190"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substituent effect on the chemical and biological properties of diisatin dihydrazone Schiff bases: DFT and docking studies\",\"authors\":\"Mohamed Shaker S. Adam ,&nbsp;Zahraa H.A. Al-Ateya ,&nbsp;Mohamed M. Makhlouf ,&nbsp;Obadah S. Abdel-Rahman ,&nbsp;Amneh Shtaiwi ,&nbsp;Ahmed Khalil\",\"doi\":\"10.1016/j.compbiolchem.2024.108190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to the considered role of lipophilicity-hydrophobicity on organic Schiff base hydrazones, different substituents of phenyl, ethyl, and methyl groups were inserted in the synthetic strategy of diisatin dihydrazones (L1–4). The biochemical enhancement was evaluated depending on their inhibitive potential of the growth power of three human tumor cells, fungi, and bacteria. The biochemical assays assigned the effected role of different substituents of phenyl, ethyl, and methyl groups on the effectiveness of their diisatin dihydrazone reagents. The interacting modes with calf thymus DNA (<em>i.e.</em> Ct-DNA) were studied <em>via</em> viscometric and spectrophotometric titration.</p><p>The organo-reagent L1 with the oxalic derivative assigned a performed inhibitive action for the examined microbes and the human tumor cell lines growing up over the terephthalic (L4) &gt; malonic (L2) &gt; succinic (L3) ones. From <em>K</em><sub>b</sub> = binding constant, and <span><math><mrow><mo>∆</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>≠</mo></mrow></msubsup></mrow></math></span> = Gibb’s free energy values, the binding of interaction within Ct-DNA was evaluated for all compounds (L1–4), in which L1, L3, and L4 assigned the highest reactivity referring to the covalent/non-covalent modes of interaction, as given for (L1–4), 14.32, 13.28, 10.87, and 12.41 × 10<sup>7</sup> mol<sup>−1</sup> dm<sup>3</sup>, and −45<sup>.1</sup>7, −43.24, −43.75, and −44.05 kJ mol<sup>−1</sup>, respectively. DFT and docking studies were achieved to support the current work.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"113 \",\"pages\":\"Article 108190\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001786\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001786","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据亲油疏水性对有机席夫碱肼的作用,在二靛基二肼(L1-4)的合成策略中加入了不同的苯基、乙基和甲基取代基。根据它们对三种人类肿瘤细胞、真菌和细菌生长的抑制潜力,对其生化增强效果进行了评估。生化检测结果表明,苯基、乙基和甲基的不同取代基对二靛红二氢腙试剂的有效性有影响。草酸衍生物有机试剂 L1 对所研究的微生物和人类肿瘤细胞株的抑制作用超过了对苯二甲酸(L4)>;丙二酸(L2)>;琥珀酸(L3)衍生物。根据 Kb = 结合常数和 ∆Gb≠ = 吉布斯自由能值,评估了所有化合物(L1-4)在 Ct-DNA 内的相互作用结合情况,其中 L1、L3 和 L4 具有最高的反应活性,这指的是共价/非共价相互作用模式,如 (L1-4) 所示,14.32、13.28、10.28、14.32、14.32、13.28、10.28。32、13.28、10.87 和 12.41 × 107 mol-1 dm3,以及-45.17、-43.24、-43.75 和 -44.05 kJ mol-1。DFT 和对接研究为当前工作提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substituent effect on the chemical and biological properties of diisatin dihydrazone Schiff bases: DFT and docking studies

According to the considered role of lipophilicity-hydrophobicity on organic Schiff base hydrazones, different substituents of phenyl, ethyl, and methyl groups were inserted in the synthetic strategy of diisatin dihydrazones (L1–4). The biochemical enhancement was evaluated depending on their inhibitive potential of the growth power of three human tumor cells, fungi, and bacteria. The biochemical assays assigned the effected role of different substituents of phenyl, ethyl, and methyl groups on the effectiveness of their diisatin dihydrazone reagents. The interacting modes with calf thymus DNA (i.e. Ct-DNA) were studied via viscometric and spectrophotometric titration.

The organo-reagent L1 with the oxalic derivative assigned a performed inhibitive action for the examined microbes and the human tumor cell lines growing up over the terephthalic (L4) > malonic (L2) > succinic (L3) ones. From Kb = binding constant, and Gb = Gibb’s free energy values, the binding of interaction within Ct-DNA was evaluated for all compounds (L1–4), in which L1, L3, and L4 assigned the highest reactivity referring to the covalent/non-covalent modes of interaction, as given for (L1–4), 14.32, 13.28, 10.87, and 12.41 × 107 mol−1 dm3, and −45.17, −43.24, −43.75, and −44.05 kJ mol−1, respectively. DFT and docking studies were achieved to support the current work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
scSFCL:Deep clustering of scRNA-seq data with subspace feature confidence learning A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies A multi-perspective deep learning framework for enhancer characterization and identification Vector embeddings by sequence similarity and context for improved compression, similarity search, clustering, organization, and manipulation of cDNA libraries MuSE: A deep learning model based on multi-feature fusion for super-enhancer prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1