{"title":"青藏高原东北部中新世时期的构造-气候-野火耦合作用","authors":"Li-Ming Liu, Zhen-Dong Cao, Xiao-Mei Li, Si-Hang Zhang, Yun-Zhe Zhang, Jia-Yi Chen, De-Fei Yan, San-Ping Xie","doi":"10.1016/j.jseaes.2024.106303","DOIUrl":null,"url":null,"abstract":"<div><p>The uplift of the Qinghai-Tibetan Plateau (QTP) is one of the most significant geological events in the Cenozoic era. While most studies have focused on the latitudinal differences in the uplift process of the QTP, there has been scant attention to its longitudinal differentiation. The Miocene epoch is pivotal for understanding both the uplift of the QTP and associated climatic changes. Wildfire events not only record changes in vegetation composition but also reflect climatic fluctuations and their driving forces. However, investigations into the interactions among these factors remain limited. This study aims to explore the coupling between the uplift of the QTP, climatic changes and wildfire frequency (or intensity) from northeastern QTP by analyzing microcharcoal concentrations and length-to-width ratios from the Miocene Youshashan Formation in Wulan County, Qinghai Province. The results indicate that the development of wildfires could be divided into three stages. Compared with the intervals 18–15 Ma and 11–8.7 Ma, the middle stage (15–11 Ma) experienced the highest wildfire frequency. This finding underscores the synchronous and close relationship between wildfire occurrences, the uplift of the QTP, and consequent climatic fluctuations. The ratio of length-to-width of microcharcoal indicates that Miocene wildfires in the Wulan Basin primarily occurred at the transitional zones between forests and grasslands. Moreover, the highest peak of wildfire events at six sites gradually shifted from the northeastern to the northwestern QTP from 18–8.7 Ma. This fact demonstrates spatiotemporal disparities in wildfire events from northern QTP, likely stemming from asynchronous uplifts there.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"276 ","pages":"Article 106303"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tectonic-climate-wildfire coupling during the Miocene in the northeastern Qinghai-Tibetan Plateau\",\"authors\":\"Li-Ming Liu, Zhen-Dong Cao, Xiao-Mei Li, Si-Hang Zhang, Yun-Zhe Zhang, Jia-Yi Chen, De-Fei Yan, San-Ping Xie\",\"doi\":\"10.1016/j.jseaes.2024.106303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uplift of the Qinghai-Tibetan Plateau (QTP) is one of the most significant geological events in the Cenozoic era. While most studies have focused on the latitudinal differences in the uplift process of the QTP, there has been scant attention to its longitudinal differentiation. The Miocene epoch is pivotal for understanding both the uplift of the QTP and associated climatic changes. Wildfire events not only record changes in vegetation composition but also reflect climatic fluctuations and their driving forces. However, investigations into the interactions among these factors remain limited. This study aims to explore the coupling between the uplift of the QTP, climatic changes and wildfire frequency (or intensity) from northeastern QTP by analyzing microcharcoal concentrations and length-to-width ratios from the Miocene Youshashan Formation in Wulan County, Qinghai Province. The results indicate that the development of wildfires could be divided into three stages. Compared with the intervals 18–15 Ma and 11–8.7 Ma, the middle stage (15–11 Ma) experienced the highest wildfire frequency. This finding underscores the synchronous and close relationship between wildfire occurrences, the uplift of the QTP, and consequent climatic fluctuations. The ratio of length-to-width of microcharcoal indicates that Miocene wildfires in the Wulan Basin primarily occurred at the transitional zones between forests and grasslands. Moreover, the highest peak of wildfire events at six sites gradually shifted from the northeastern to the northwestern QTP from 18–8.7 Ma. This fact demonstrates spatiotemporal disparities in wildfire events from northern QTP, likely stemming from asynchronous uplifts there.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":\"276 \",\"pages\":\"Article 106303\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024002980\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024002980","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Tectonic-climate-wildfire coupling during the Miocene in the northeastern Qinghai-Tibetan Plateau
The uplift of the Qinghai-Tibetan Plateau (QTP) is one of the most significant geological events in the Cenozoic era. While most studies have focused on the latitudinal differences in the uplift process of the QTP, there has been scant attention to its longitudinal differentiation. The Miocene epoch is pivotal for understanding both the uplift of the QTP and associated climatic changes. Wildfire events not only record changes in vegetation composition but also reflect climatic fluctuations and their driving forces. However, investigations into the interactions among these factors remain limited. This study aims to explore the coupling between the uplift of the QTP, climatic changes and wildfire frequency (or intensity) from northeastern QTP by analyzing microcharcoal concentrations and length-to-width ratios from the Miocene Youshashan Formation in Wulan County, Qinghai Province. The results indicate that the development of wildfires could be divided into three stages. Compared with the intervals 18–15 Ma and 11–8.7 Ma, the middle stage (15–11 Ma) experienced the highest wildfire frequency. This finding underscores the synchronous and close relationship between wildfire occurrences, the uplift of the QTP, and consequent climatic fluctuations. The ratio of length-to-width of microcharcoal indicates that Miocene wildfires in the Wulan Basin primarily occurred at the transitional zones between forests and grasslands. Moreover, the highest peak of wildfire events at six sites gradually shifted from the northeastern to the northwestern QTP from 18–8.7 Ma. This fact demonstrates spatiotemporal disparities in wildfire events from northern QTP, likely stemming from asynchronous uplifts there.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.