{"title":"应用 LSC 技术测量空气中 Pb-212 的方法","authors":"A. Grygier, S. Chałupnik","doi":"10.1016/j.radmeas.2024.107278","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes a method enabling the measurement of the potential alpha energy concentration (PAEC) of thoron decay products based on the determined concentration of lead <sup>212</sup>Pb (T<sub>1/2</sub> = 10.64 h) in the air [Lever et al., 2003]. A liquid scintillation spectrometer was used to determine the concentration of the <sup>212</sup>Pb isotope, and the sample was taken by pumping air through a filter where thoron decay products were stored. This method can be classified as integrating because the sample takes several hours, and the measurement results in one value for the entire sampling period. Measurements were carried out in laboratory conditions, in a climatic chamber where a constant supply of thoron was maintained, and in environmental conditions, in the basement of the family house and outdoors. Sampling took from 12 to 48 h. This article presents the preliminary results of the study. The obtained results were in the range of 170–195 Bq/m<sup>3</sup> in the case of laboratory measurements and from 0.04 to 0.79 Bq/m<sup>3</sup> in the case of environmental measurements. Based on the obtained results, the potential alpha energy concentration (PAEC) was calculated. The application of the low-level LS spectrometer allows for the achievement of a lower limit of detection (LLD) at level 0.04–0.05 Bq/m<sup>3</sup>, while the use of the portable LS spectrometer allows for the measurement of deficient <sup>212</sup>Pb concentrations in the range of 0.4–0.5 Bq/m<sup>3</sup>. The obtained results confirm that the method is suitable for determining the concentration of <sup>212</sup>Pb and, consequently, assessing exposure to thoron progeny.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724002269/pdfft?md5=21db9c90ac51a6ee728a58b6e34e4d33&pid=1-s2.0-S1350448724002269-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The method of Pb-212 measurements in air with the application of the LSC technique\",\"authors\":\"A. Grygier, S. Chałupnik\",\"doi\":\"10.1016/j.radmeas.2024.107278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes a method enabling the measurement of the potential alpha energy concentration (PAEC) of thoron decay products based on the determined concentration of lead <sup>212</sup>Pb (T<sub>1/2</sub> = 10.64 h) in the air [Lever et al., 2003]. A liquid scintillation spectrometer was used to determine the concentration of the <sup>212</sup>Pb isotope, and the sample was taken by pumping air through a filter where thoron decay products were stored. This method can be classified as integrating because the sample takes several hours, and the measurement results in one value for the entire sampling period. Measurements were carried out in laboratory conditions, in a climatic chamber where a constant supply of thoron was maintained, and in environmental conditions, in the basement of the family house and outdoors. Sampling took from 12 to 48 h. This article presents the preliminary results of the study. The obtained results were in the range of 170–195 Bq/m<sup>3</sup> in the case of laboratory measurements and from 0.04 to 0.79 Bq/m<sup>3</sup> in the case of environmental measurements. Based on the obtained results, the potential alpha energy concentration (PAEC) was calculated. The application of the low-level LS spectrometer allows for the achievement of a lower limit of detection (LLD) at level 0.04–0.05 Bq/m<sup>3</sup>, while the use of the portable LS spectrometer allows for the measurement of deficient <sup>212</sup>Pb concentrations in the range of 0.4–0.5 Bq/m<sup>3</sup>. The obtained results confirm that the method is suitable for determining the concentration of <sup>212</sup>Pb and, consequently, assessing exposure to thoron progeny.</p></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002269/pdfft?md5=21db9c90ac51a6ee728a58b6e34e4d33&pid=1-s2.0-S1350448724002269-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724002269\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002269","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The method of Pb-212 measurements in air with the application of the LSC technique
This paper describes a method enabling the measurement of the potential alpha energy concentration (PAEC) of thoron decay products based on the determined concentration of lead 212Pb (T1/2 = 10.64 h) in the air [Lever et al., 2003]. A liquid scintillation spectrometer was used to determine the concentration of the 212Pb isotope, and the sample was taken by pumping air through a filter where thoron decay products were stored. This method can be classified as integrating because the sample takes several hours, and the measurement results in one value for the entire sampling period. Measurements were carried out in laboratory conditions, in a climatic chamber where a constant supply of thoron was maintained, and in environmental conditions, in the basement of the family house and outdoors. Sampling took from 12 to 48 h. This article presents the preliminary results of the study. The obtained results were in the range of 170–195 Bq/m3 in the case of laboratory measurements and from 0.04 to 0.79 Bq/m3 in the case of environmental measurements. Based on the obtained results, the potential alpha energy concentration (PAEC) was calculated. The application of the low-level LS spectrometer allows for the achievement of a lower limit of detection (LLD) at level 0.04–0.05 Bq/m3, while the use of the portable LS spectrometer allows for the measurement of deficient 212Pb concentrations in the range of 0.4–0.5 Bq/m3. The obtained results confirm that the method is suitable for determining the concentration of 212Pb and, consequently, assessing exposure to thoron progeny.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.