基于基于单元的平滑有限元模型的 RANS 湍流模型对湍流预测的评估

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2024-09-03 DOI:10.1016/j.enganabound.2024.105937
{"title":"基于基于单元的平滑有限元模型的 RANS 湍流模型对湍流预测的评估","authors":"","doi":"10.1016/j.enganabound.2024.105937","DOIUrl":null,"url":null,"abstract":"<div><p>There is a growing body of literature that recognizes the importance of Smoothed Finite Element Method (S-FEM) in computational fluid dynamics (CFD) fields and, to a lesser extent, in complex turbulent flow problems. This study evaluates the performance of Reynolds-averaged Navier-Stokes (RANS) turbulence models within the S-FEM framework for predicting incompressible turbulent flows. Our assessment of three turbulence models based on the cell-based S-FEM (CS-FEM) is convincingly supported by testing on three flow problems. It is found that the CS-FEM exhibits superior mesh robustness compared to the Finite Volume Method (FVM) and achieves higher computational accuracy than the Finite Element Method (FEM). Notably, the CS-FEM combined with the standard k-epsilon model (CS-FEM-SKE) and the realizable k-epsilon model (CS-FEM-RKE) demonstrate robust performance in handling severely distorted meshes, with CS-FEM-RKE outperforming in regions of strong flow separation and convection. The Spalart-Allmaras model with CS-FEM (CS-FEM-SA) offers faster computational speed but shows poor mesh robustness. The hexcore mesh based on CS-FEM-RKE is employed to evaluate the aerodynamic performance of High-speed train (HST), resulting in enhanced computational efficiency. The outcomes show good agreement with other numerical studies and experimental data. Overall, it also highlights the latent capability of CS-FEM in solving complex engineering problems.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of RANS turbulence models based on the cell-based smoothed finite element model for prediction of turbulent flow\",\"authors\":\"\",\"doi\":\"10.1016/j.enganabound.2024.105937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a growing body of literature that recognizes the importance of Smoothed Finite Element Method (S-FEM) in computational fluid dynamics (CFD) fields and, to a lesser extent, in complex turbulent flow problems. This study evaluates the performance of Reynolds-averaged Navier-Stokes (RANS) turbulence models within the S-FEM framework for predicting incompressible turbulent flows. Our assessment of three turbulence models based on the cell-based S-FEM (CS-FEM) is convincingly supported by testing on three flow problems. It is found that the CS-FEM exhibits superior mesh robustness compared to the Finite Volume Method (FVM) and achieves higher computational accuracy than the Finite Element Method (FEM). Notably, the CS-FEM combined with the standard k-epsilon model (CS-FEM-SKE) and the realizable k-epsilon model (CS-FEM-RKE) demonstrate robust performance in handling severely distorted meshes, with CS-FEM-RKE outperforming in regions of strong flow separation and convection. The Spalart-Allmaras model with CS-FEM (CS-FEM-SA) offers faster computational speed but shows poor mesh robustness. The hexcore mesh based on CS-FEM-RKE is employed to evaluate the aerodynamic performance of High-speed train (HST), resulting in enhanced computational efficiency. The outcomes show good agreement with other numerical studies and experimental data. Overall, it also highlights the latent capability of CS-FEM in solving complex engineering problems.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724004107\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004107","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的文献认识到平滑有限元法(S-FEM)在计算流体动力学(CFD)领域的重要性,其次是在复杂湍流问题中的重要性。本研究评估了雷诺平均纳维-斯托克斯(RANS)湍流模型在 S-FEM 框架内预测不可压缩湍流的性能。我们对基于单元的 S-FEM(CS-FEM)的三个湍流模型进行了评估,并通过对三个流动问题的测试得到了令人信服的支持。结果发现,与有限体积法(FVM)相比,CS-FEM 的网格稳健性更强,计算精度也高于有限元法(FEM)。值得注意的是,CS-FEM 与标准 k-epsilon 模型(CS-FEM-SKE)和可实现 k-epsilon 模型(CS-FEM-RKE)相结合,在处理严重扭曲的网格时表现出强大的性能,其中 CS-FEM-RKE 在强流动分离和对流区域表现更优。采用 CS-FEM 的 Spalart-Allmaras 模型(CS-FEM-SA)计算速度更快,但网格鲁棒性较差。基于 CS-FEM-RKE 的六核网格被用于评估高速列车(HST)的气动性能,从而提高了计算效率。计算结果与其他数值研究和实验数据显示出良好的一致性。总之,它还凸显了 CS-FEM 在解决复杂工程问题方面的潜在能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of RANS turbulence models based on the cell-based smoothed finite element model for prediction of turbulent flow

There is a growing body of literature that recognizes the importance of Smoothed Finite Element Method (S-FEM) in computational fluid dynamics (CFD) fields and, to a lesser extent, in complex turbulent flow problems. This study evaluates the performance of Reynolds-averaged Navier-Stokes (RANS) turbulence models within the S-FEM framework for predicting incompressible turbulent flows. Our assessment of three turbulence models based on the cell-based S-FEM (CS-FEM) is convincingly supported by testing on three flow problems. It is found that the CS-FEM exhibits superior mesh robustness compared to the Finite Volume Method (FVM) and achieves higher computational accuracy than the Finite Element Method (FEM). Notably, the CS-FEM combined with the standard k-epsilon model (CS-FEM-SKE) and the realizable k-epsilon model (CS-FEM-RKE) demonstrate robust performance in handling severely distorted meshes, with CS-FEM-RKE outperforming in regions of strong flow separation and convection. The Spalart-Allmaras model with CS-FEM (CS-FEM-SA) offers faster computational speed but shows poor mesh robustness. The hexcore mesh based on CS-FEM-RKE is employed to evaluate the aerodynamic performance of High-speed train (HST), resulting in enhanced computational efficiency. The outcomes show good agreement with other numerical studies and experimental data. Overall, it also highlights the latent capability of CS-FEM in solving complex engineering problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
A TOUGH-FEMM based cryogenic THM coupled model and its application to cold-region tunnels AttenEpilepsy: A 2D convolutional network model based on multi-head self-attention A novel direct interpolation boundary element method formulation for solving diffusive–advective problems Numerical modeling and failure analysis of steel fiber-reinforced concrete beams in a reformulated mesoscopic peridynamic model Self-propulsion performance prediction in calm water based on RANS/TEBEM coupling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1