晶体电子能谱中的准迪拉克点

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-09-02 DOI:10.1038/s42005-024-01788-2
Grigorii P. Mikitik
{"title":"晶体电子能谱中的准迪拉克点","authors":"Grigorii P. Mikitik","doi":"10.1038/s42005-024-01788-2","DOIUrl":null,"url":null,"abstract":"Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01788-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Quasi-Dirac points in electron-energy spectra of crystals\",\"authors\":\"Grigorii P. Mikitik\",\"doi\":\"10.1038/s42005-024-01788-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01788-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01788-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01788-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

特定的性质,如表面费米弧、量子振荡特征和对磁场的各种反应,将狄拉克半金属与普通材料区分开来。这些特性是由狄拉克点决定的,在狄拉克点上会出现两个电子能带的接触,在其附近这些能带会在准动量中线性发散。这项研究表明,几乎同样的特性也存在于更广泛的材料类别中,在这些材料中,狄拉克谱具有与费米能相当的明显间隙。换句话说,点带的变性及其线性色散并不是这些性质存在的必要条件。唯一的充分条件如下:在这样一个准狄拉克点附近,两个接近的带可以用一个考虑到强自旋轨道相互作用的双带模型很好地描述。为了说明结果,我们考虑了 ZrTe5 的光谱。该光谱包含一个特殊的准狄拉克点,类似于铋的狄拉克点。狄拉克半金属是导带和价带在所谓的狄拉克点相交的三维材料。作者指出,迪拉克半金属的几乎所有固有特性都可以由更广泛的一类材料表现出来,这些材料不需要无间隙的迪拉克点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quasi-Dirac points in electron-energy spectra of crystals
Specific properties, such as surface Fermi arcs, features of quantum oscillations and of various responses to a magnetic field, distinguish Dirac semimetals from ordinary materials. These properties are determined by Dirac points at which a contact of two electron-energy bands occurs and in the vicinity of which these bands disperse linearly in the quasimomentum. This work shows that almost the same properties are inherent in a wider class of materials in which the Dirac spectrum can have a noticeable gap comparable with the Fermi energy. In other words, the degeneracy of the bands at the point and their linear dispersion are not necessary for the existence of these properties. The only sufficient condition is the following: In the vicinity of such a quasi-Dirac point, the two close bands are well described by a two-band model that takes into account the strong spin-orbit interaction. To illustrate the results, the spectrum of ZrTe5 is considered. This spectrum contains a special quasi-Dirac point, similar to that in bismuth. Dirac semimetals are 3D materials where the conduction and valence bands meet at what are called Dirac points. The author shows that almost all the properties inherent in the Dirac semimetals are exhibited by a wider class of materials that need not have the gapless Dirac points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations. Controlling noise with self-organized resetting. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1