Liukang Bian, Fengren Cao, Han Zhao, Fei Xiang, Haoxuan Sun, Meng Wang, Liang Li
{"title":"用于可见光和近红外双波段成像及安全光通信的自供电 Perovskite/Si 双极响应光电探测器","authors":"Liukang Bian, Fengren Cao, Han Zhao, Fei Xiang, Haoxuan Sun, Meng Wang, Liang Li","doi":"10.1002/lpor.202401331","DOIUrl":null,"url":null,"abstract":"Vertically stacked wavelength modulation bipolar response photodetectors are expected to be applied in various fields because they enable bipolar detection and transmission within one device and do not require harsh operating conditions. However, the as-reported bipolar devices either need to change the detection mode (flipping the device or applying external bias) or have limited application effects. In this study, a self-powered FAPbI<sub>3</sub>/silicon hybrid visible and near-infrared bipolar response photodetector is reported, and the bipolar response is tuned by controlling the transmittance and interface contact of transparent electrodes. Moreover, unlike for photosensitive layers such as perovskites or organic compounds, the preparation of electrodes does not involve solvents, and array devices with different electrodes can be prepared in microregions without affecting adjacent regions. Then, an encrypted communication system that requires comprehensive consideration of the positive and negative states of different transparent electrode-based devices caused by 650-nm visible and 940-nm near-infrared transmission signals are designed, increasing the difficulty of decryption. A dual-band spectral imaging system that does not require additional voltage driving by combining the reflection of visible light and the penetration ability of near-infrared light is implemented, ensuring miniaturization and high integration of the visual imaging system.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Powered Perovskite/Si Bipolar Response Photodetector for Visible and Near-Infrared Dual-Band Imaging and Secure Optical Communication\",\"authors\":\"Liukang Bian, Fengren Cao, Han Zhao, Fei Xiang, Haoxuan Sun, Meng Wang, Liang Li\",\"doi\":\"10.1002/lpor.202401331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertically stacked wavelength modulation bipolar response photodetectors are expected to be applied in various fields because they enable bipolar detection and transmission within one device and do not require harsh operating conditions. However, the as-reported bipolar devices either need to change the detection mode (flipping the device or applying external bias) or have limited application effects. In this study, a self-powered FAPbI<sub>3</sub>/silicon hybrid visible and near-infrared bipolar response photodetector is reported, and the bipolar response is tuned by controlling the transmittance and interface contact of transparent electrodes. Moreover, unlike for photosensitive layers such as perovskites or organic compounds, the preparation of electrodes does not involve solvents, and array devices with different electrodes can be prepared in microregions without affecting adjacent regions. Then, an encrypted communication system that requires comprehensive consideration of the positive and negative states of different transparent electrode-based devices caused by 650-nm visible and 940-nm near-infrared transmission signals are designed, increasing the difficulty of decryption. A dual-band spectral imaging system that does not require additional voltage driving by combining the reflection of visible light and the penetration ability of near-infrared light is implemented, ensuring miniaturization and high integration of the visual imaging system.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202401331\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401331","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Self-Powered Perovskite/Si Bipolar Response Photodetector for Visible and Near-Infrared Dual-Band Imaging and Secure Optical Communication
Vertically stacked wavelength modulation bipolar response photodetectors are expected to be applied in various fields because they enable bipolar detection and transmission within one device and do not require harsh operating conditions. However, the as-reported bipolar devices either need to change the detection mode (flipping the device or applying external bias) or have limited application effects. In this study, a self-powered FAPbI3/silicon hybrid visible and near-infrared bipolar response photodetector is reported, and the bipolar response is tuned by controlling the transmittance and interface contact of transparent electrodes. Moreover, unlike for photosensitive layers such as perovskites or organic compounds, the preparation of electrodes does not involve solvents, and array devices with different electrodes can be prepared in microregions without affecting adjacent regions. Then, an encrypted communication system that requires comprehensive consideration of the positive and negative states of different transparent electrode-based devices caused by 650-nm visible and 940-nm near-infrared transmission signals are designed, increasing the difficulty of decryption. A dual-band spectral imaging system that does not require additional voltage driving by combining the reflection of visible light and the penetration ability of near-infrared light is implemented, ensuring miniaturization and high integration of the visual imaging system.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.