{"title":"以α-芳基烯丙基醇和芳基锍盐为原料,通过碱介导合成芳基烯醇醚。","authors":"Yu-Fei Yao , Jia-Wei Song , Cheng-Pan Zhang","doi":"10.1039/d4ob01220h","DOIUrl":null,"url":null,"abstract":"<div><div>A concise synthesis of aryl enol ethers from allylic alcohols and arylsulfonium salts by simply using an inorganic base as a mediator is described. The reaction enabled the facile conversion of various α-aryl allylic alcohols into the corresponding aryl enol ethers in good yields with excellent selectivity. The results demonstrated that both symmetric triarylsulfonium triflate and 10-methyl-5-aryl-5,10-dihydrophenothiazin-5-ium salts were effective arylation reagents for the base-initiated selective <em>O</em>-arylation and isomerization of α-aryl allylic alcohols. This reaction represents the first use of arylsulfonium salts as arylation reagents to access aryl enol ethers directly from allylic alcohols.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Base-mediated synthesis of aryl enol ethers from α-aryl allylic alcohols and arylsulfonium salts†\",\"authors\":\"Yu-Fei Yao , Jia-Wei Song , Cheng-Pan Zhang\",\"doi\":\"10.1039/d4ob01220h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A concise synthesis of aryl enol ethers from allylic alcohols and arylsulfonium salts by simply using an inorganic base as a mediator is described. The reaction enabled the facile conversion of various α-aryl allylic alcohols into the corresponding aryl enol ethers in good yields with excellent selectivity. The results demonstrated that both symmetric triarylsulfonium triflate and 10-methyl-5-aryl-5,10-dihydrophenothiazin-5-ium salts were effective arylation reagents for the base-initiated selective <em>O</em>-arylation and isomerization of α-aryl allylic alcohols. This reaction represents the first use of arylsulfonium salts as arylation reagents to access aryl enol ethers directly from allylic alcohols.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1477052024007870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052024007870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Base-mediated synthesis of aryl enol ethers from α-aryl allylic alcohols and arylsulfonium salts†
A concise synthesis of aryl enol ethers from allylic alcohols and arylsulfonium salts by simply using an inorganic base as a mediator is described. The reaction enabled the facile conversion of various α-aryl allylic alcohols into the corresponding aryl enol ethers in good yields with excellent selectivity. The results demonstrated that both symmetric triarylsulfonium triflate and 10-methyl-5-aryl-5,10-dihydrophenothiazin-5-ium salts were effective arylation reagents for the base-initiated selective O-arylation and isomerization of α-aryl allylic alcohols. This reaction represents the first use of arylsulfonium salts as arylation reagents to access aryl enol ethers directly from allylic alcohols.